Cargando…

Fluorescence-informed photoacoustic discrimination of multiple chromophores by lifetime mapping optically gated responses

Synchronously Amplified Photoacoustic Image Recovery (SAPhIRe) offers improved background suppression using non-linear properties of modulatable contrast agents. Using SAPhIRe, multiple contrast agents in the same absorption window can be detected independently based on their unique triplet-state li...

Descripción completa

Detalles Bibliográficos
Autores principales: Islam, Md S., VanderLaan, Donald, Hickman, Josie, Emelianov, Stanislav, Dickson, Robert M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461196/
https://www.ncbi.nlm.nih.gov/pubmed/37645258
http://dx.doi.org/10.1016/j.pacs.2023.100529
Descripción
Sumario:Synchronously Amplified Photoacoustic Image Recovery (SAPhIRe) offers improved background suppression using non-linear properties of modulatable contrast agents. Using SAPhIRe, multiple contrast agents in the same absorption window can be detected independently based on their unique triplet-state lifetimes. Here, we have demonstrated the unmixing of rose bengal and eosin Y signals from solution based on triplet-state lifetime mapping using both fluorescence and photoacoustics. Varying the pump-probe delay enables resolution and recovery of fast-decaying rose bengal and of slowly decaying eosin Y modulated photoacoustic signals, resulting from optically gated triplet state residence. Distinct images were reconstructed within tissue-mimicking phantom using the fitting coefficients of triplet-state lifetimes. Fluorescence was used to screen for modulation prior to photoacoustic imaging. The results suggest that lifetime unmixing can be utilized to simultaneously detect multiple pathologies with overlapping spectra using photoacoustic imaging.