Cargando…

Design and analysis of hybrid stepping motors with integrated planetary gear trains

This work presents a novel integrated device that combines a hybrid stepping motor (HSM) and a planetary gear train (PGT) reducer as a compact structural assembly. In this study, a systematic design process was developed to efficiently implement the integrated device. By applying the gear profile on...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guan-Chen, Wang, Shao-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461546/
https://www.ncbi.nlm.nih.gov/pubmed/35313767
http://dx.doi.org/10.1177/00368504221086690
Descripción
Sumario:This work presents a novel integrated device that combines a hybrid stepping motor (HSM) and a planetary gear train (PGT) reducer as a compact structural assembly. In this study, a systematic design process was developed to efficiently implement the integrated device. By applying the gear profile on the rotor and the stator, a 9:1 two stages PGT reducer is integrated with a standard 42 type 2-pole stepping motor. The quadratic interpolation method was applied to derive the optimal design of the geometric configurations of the HSM. The electromagnetic characteristics and output performance of the integrated device, including flux linkage, back-emf constant, holding torque, and output torque, were analysed. Finally, the output performance between an existing design and the novel integrated design were compared. The two designs had similar output and holding torque, but the torque ripple was approximately 44.7% lower in the integrated device from 30% to 16.6%. In addition, the axial space arrangement was reduced by 5.2% from 67.7mm to 64.1 5mm, and the torque density was improved by 4.4%.