Cargando…
Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level
Aphis gossypii Glover is a major insect pest in cotton production, which can cause yield reduction in severe cases. In this paper, we proposed the A. gossypii infestation monitoring method, which identifies the infestation level of A. gossypii at the cotton seedling stage, and can improve the effici...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461631/ https://www.ncbi.nlm.nih.gov/pubmed/37645464 http://dx.doi.org/10.3389/fpls.2023.1200901 |
_version_ | 1785097877116157952 |
---|---|
author | Xu, Xin Shi, Jing Chen, Yongqin He, Qiang Liu, Liangliang Sun, Tong Ding, Ruifeng Lu, Yanhui Xue, Chaoqun Qiao, Hongbo |
author_facet | Xu, Xin Shi, Jing Chen, Yongqin He, Qiang Liu, Liangliang Sun, Tong Ding, Ruifeng Lu, Yanhui Xue, Chaoqun Qiao, Hongbo |
author_sort | Xu, Xin |
collection | PubMed |
description | Aphis gossypii Glover is a major insect pest in cotton production, which can cause yield reduction in severe cases. In this paper, we proposed the A. gossypii infestation monitoring method, which identifies the infestation level of A. gossypii at the cotton seedling stage, and can improve the efficiency of early warning and forecasting of A. gossypii, and achieve precise prevention and cure according to the predicted infestation level. We used smartphones to collect A. gossypii infestation images and compiled an infestation image data set. And then constructed, trained, and tested three different A. gossypii infestation recognition models based on Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once (YOLO)v5 and single-shot detector (SSD) models. The results showed that the YOLOv5 model had the highest mean average precision (mAP) value (95.7%) and frames per second (FPS) value (61.73) for the same conditions. In studying the influence of different image resolutions on the performance of the YOLOv5 model, we found that YOLOv5s performed better than YOLOv5x in terms of overall performance, with the best performance at an image resolution of 640×640 (mAP of 96.8%, FPS of 71.43). And the comparison with the latest YOLOv8s showed that the YOLOv5s performed better than the YOLOv8s. Finally, the trained model was deployed to the Android mobile, and the results showed that mobile-side detection was the best when the image resolution was 256×256, with an accuracy of 81.0% and FPS of 6.98. The real-time recognition system established in this study can provide technical support for infestation forecasting and precise prevention of A. gossypii. |
format | Online Article Text |
id | pubmed-10461631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104616312023-08-29 Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level Xu, Xin Shi, Jing Chen, Yongqin He, Qiang Liu, Liangliang Sun, Tong Ding, Ruifeng Lu, Yanhui Xue, Chaoqun Qiao, Hongbo Front Plant Sci Plant Science Aphis gossypii Glover is a major insect pest in cotton production, which can cause yield reduction in severe cases. In this paper, we proposed the A. gossypii infestation monitoring method, which identifies the infestation level of A. gossypii at the cotton seedling stage, and can improve the efficiency of early warning and forecasting of A. gossypii, and achieve precise prevention and cure according to the predicted infestation level. We used smartphones to collect A. gossypii infestation images and compiled an infestation image data set. And then constructed, trained, and tested three different A. gossypii infestation recognition models based on Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once (YOLO)v5 and single-shot detector (SSD) models. The results showed that the YOLOv5 model had the highest mean average precision (mAP) value (95.7%) and frames per second (FPS) value (61.73) for the same conditions. In studying the influence of different image resolutions on the performance of the YOLOv5 model, we found that YOLOv5s performed better than YOLOv5x in terms of overall performance, with the best performance at an image resolution of 640×640 (mAP of 96.8%, FPS of 71.43). And the comparison with the latest YOLOv8s showed that the YOLOv5s performed better than the YOLOv8s. Finally, the trained model was deployed to the Android mobile, and the results showed that mobile-side detection was the best when the image resolution was 256×256, with an accuracy of 81.0% and FPS of 6.98. The real-time recognition system established in this study can provide technical support for infestation forecasting and precise prevention of A. gossypii. Frontiers Media S.A. 2023-08-14 /pmc/articles/PMC10461631/ /pubmed/37645464 http://dx.doi.org/10.3389/fpls.2023.1200901 Text en Copyright © 2023 Xu, Shi, Chen, He, Liu, Sun, Ding, Lu, Xue and Qiao https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Xu, Xin Shi, Jing Chen, Yongqin He, Qiang Liu, Liangliang Sun, Tong Ding, Ruifeng Lu, Yanhui Xue, Chaoqun Qiao, Hongbo Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level |
title | Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level |
title_full | Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level |
title_fullStr | Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level |
title_full_unstemmed | Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level |
title_short | Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level |
title_sort | research on machine vision and deep learning based recognition of cotton seedling aphid infestation level |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461631/ https://www.ncbi.nlm.nih.gov/pubmed/37645464 http://dx.doi.org/10.3389/fpls.2023.1200901 |
work_keys_str_mv | AT xuxin researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT shijing researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT chenyongqin researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT heqiang researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT liuliangliang researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT suntong researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT dingruifeng researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT luyanhui researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT xuechaoqun researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel AT qiaohongbo researchonmachinevisionanddeeplearningbasedrecognitionofcottonseedlingaphidinfestationlevel |