Cargando…
Geometry of population activity in spiking networks with low-rank structure
Recurrent network models are instrumental in investigating how behaviorally-relevant computations emerge from collective neural dynamics. A recently developed class of models based on low-rank connectivity provides an analytically tractable framework for understanding of how connectivity structure d...
Autores principales: | Cimeša, Ljubica, Ciric, Lazar, Ostojic, Srdjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461857/ https://www.ncbi.nlm.nih.gov/pubmed/37549194 http://dx.doi.org/10.1371/journal.pcbi.1011315 |
Ejemplares similares
-
The impact of sparsity in low-rank recurrent neural networks
por: Herbert, Elizabeth, et al.
Publicado: (2022) -
A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks
por: Schaffer, Evan S., et al.
Publicado: (2013) -
From Spiking Neuron Models to Linear-Nonlinear Models
por: Ostojic, Srdjan, et al.
Publicado: (2011) -
Geometry of Rank Reduction
por: Förste, Stefan, et al.
Publicado: (2005) -
Natural firing patterns reduce sensitivity of synaptic plasticity to spike-timing
por: Graupner, Michael, et al.
Publicado: (2013)