Cargando…

Photolipid excitation triggers depolarizing optocapacitive currents and action potentials

Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high...

Descripción completa

Detalles Bibliográficos
Autores principales: Bassetto, Carlos A. Z., Pfeffermann, Juergen, Yadav, Rohit, Strassgschwandtner, Simon, Glasnov, Toma, Bezanilla, Francisco, Pohl, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462005/
https://www.ncbi.nlm.nih.gov/pubmed/37645959
http://dx.doi.org/10.1101/2023.08.11.552849
_version_ 1785097973873508352
author Bassetto, Carlos A. Z.
Pfeffermann, Juergen
Yadav, Rohit
Strassgschwandtner, Simon
Glasnov, Toma
Bezanilla, Francisco
Pohl, Peter
author_facet Bassetto, Carlos A. Z.
Pfeffermann, Juergen
Yadav, Rohit
Strassgschwandtner, Simon
Glasnov, Toma
Bezanilla, Francisco
Pohl, Peter
author_sort Bassetto, Carlos A. Z.
collection PubMed
description Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control.
format Online
Article
Text
id pubmed-10462005
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104620052023-08-29 Photolipid excitation triggers depolarizing optocapacitive currents and action potentials Bassetto, Carlos A. Z. Pfeffermann, Juergen Yadav, Rohit Strassgschwandtner, Simon Glasnov, Toma Bezanilla, Francisco Pohl, Peter bioRxiv Article Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control. Cold Spring Harbor Laboratory 2023-08-14 /pmc/articles/PMC10462005/ /pubmed/37645959 http://dx.doi.org/10.1101/2023.08.11.552849 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Bassetto, Carlos A. Z.
Pfeffermann, Juergen
Yadav, Rohit
Strassgschwandtner, Simon
Glasnov, Toma
Bezanilla, Francisco
Pohl, Peter
Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
title Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
title_full Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
title_fullStr Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
title_full_unstemmed Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
title_short Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
title_sort photolipid excitation triggers depolarizing optocapacitive currents and action potentials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462005/
https://www.ncbi.nlm.nih.gov/pubmed/37645959
http://dx.doi.org/10.1101/2023.08.11.552849
work_keys_str_mv AT bassettocarlosaz photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials
AT pfeffermannjuergen photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials
AT yadavrohit photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials
AT strassgschwandtnersimon photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials
AT glasnovtoma photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials
AT bezanillafrancisco photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials
AT pohlpeter photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials