Cargando…
Photolipid excitation triggers depolarizing optocapacitive currents and action potentials
Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462005/ https://www.ncbi.nlm.nih.gov/pubmed/37645959 http://dx.doi.org/10.1101/2023.08.11.552849 |
_version_ | 1785097973873508352 |
---|---|
author | Bassetto, Carlos A. Z. Pfeffermann, Juergen Yadav, Rohit Strassgschwandtner, Simon Glasnov, Toma Bezanilla, Francisco Pohl, Peter |
author_facet | Bassetto, Carlos A. Z. Pfeffermann, Juergen Yadav, Rohit Strassgschwandtner, Simon Glasnov, Toma Bezanilla, Francisco Pohl, Peter |
author_sort | Bassetto, Carlos A. Z. |
collection | PubMed |
description | Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control. |
format | Online Article Text |
id | pubmed-10462005 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104620052023-08-29 Photolipid excitation triggers depolarizing optocapacitive currents and action potentials Bassetto, Carlos A. Z. Pfeffermann, Juergen Yadav, Rohit Strassgschwandtner, Simon Glasnov, Toma Bezanilla, Francisco Pohl, Peter bioRxiv Article Optically-induced changes in membrane capacitance may regulate neuronal activity without requiring genetic modifications. Previously, they mainly relied on sudden temperature jumps due to light absorption by membrane-associated nanomaterials or water. Yet, nanomaterial targeting or the required high infrared light intensities obstruct broad applicability. Now, we propose a very versatile approach: photolipids (azobenzene-containing diacylglycerols) mediate light-triggered cellular de- or hyperpolarization. As planar bilayer experiments show, the respective currents emerge from millisecond-timescale changes in bilayer capacitance. UV light changes photolipid conformation, which awards embedding plasma membranes with increased capacitance and evokes depolarizing currents. They open voltage-gated sodium channels in cells, generating action potentials. Blue light reduces the area per photolipid, decreasing membrane capacitance and eliciting hyperpolarization. If present, mechanosensitive channels respond to the increased mechanical membrane tension, generating large depolarizing currents that elicit action potentials. Membrane self-insertion of administered photolipids and focused illumination allows cell excitation with high spatiotemporal control. Cold Spring Harbor Laboratory 2023-08-14 /pmc/articles/PMC10462005/ /pubmed/37645959 http://dx.doi.org/10.1101/2023.08.11.552849 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Bassetto, Carlos A. Z. Pfeffermann, Juergen Yadav, Rohit Strassgschwandtner, Simon Glasnov, Toma Bezanilla, Francisco Pohl, Peter Photolipid excitation triggers depolarizing optocapacitive currents and action potentials |
title | Photolipid excitation triggers depolarizing optocapacitive currents and action potentials |
title_full | Photolipid excitation triggers depolarizing optocapacitive currents and action potentials |
title_fullStr | Photolipid excitation triggers depolarizing optocapacitive currents and action potentials |
title_full_unstemmed | Photolipid excitation triggers depolarizing optocapacitive currents and action potentials |
title_short | Photolipid excitation triggers depolarizing optocapacitive currents and action potentials |
title_sort | photolipid excitation triggers depolarizing optocapacitive currents and action potentials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462005/ https://www.ncbi.nlm.nih.gov/pubmed/37645959 http://dx.doi.org/10.1101/2023.08.11.552849 |
work_keys_str_mv | AT bassettocarlosaz photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials AT pfeffermannjuergen photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials AT yadavrohit photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials AT strassgschwandtnersimon photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials AT glasnovtoma photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials AT bezanillafrancisco photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials AT pohlpeter photolipidexcitationtriggersdepolarizingoptocapacitivecurrentsandactionpotentials |