Cargando…
Sigmoni: classification of nanopore signal with a compressed pangenome index
Improvements in nanopore sequencing necessitate efficient classification methods, including pre-filtering and adaptive sampling algorithms that enrich for reads of interest. Signal-based approaches circumvent the computational bottleneck of basecalling. But past methods for signal-based classificati...
Autores principales: | Shivakumar, Vikram S., Ahmed, Omar Y., Kovaka, Sam, Zakeri, Mohsen, Langmead, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462034/ https://www.ncbi.nlm.nih.gov/pubmed/37645873 http://dx.doi.org/10.1101/2023.08.15.553308 |
Ejemplares similares
-
Movi: a fast and cache-efficient full-text pangenome index
por: Zakeri, Mohsen, et al.
Publicado: (2023) -
SPUMONI 2: improved classification using a pangenome index of minimizer digests
por: Ahmed, Omar Y., et al.
Publicado: (2023) -
Efficient taxa identification using a pangenome index
por: Ahmed, Omar, et al.
Publicado: (2023) -
Pan-genomic matching statistics for targeted nanopore sequencing
por: Ahmed, Omar, et al.
Publicado: (2021) -
Pangenomic Genotyping with the Marker Array
por: Mun, Taher, et al.
Publicado: (2022)