Cargando…
DISSECTING TUMOR TRANSCRIPTIONAL HETEROGENEITY FROM SINGLE-CELL RNA-SEQ DATA BY GENERALIZED BINARY COVARIANCE DECOMPOSITION
Profiling tumors with single-cell RNA sequencing (scRNA-seq) has the potential to identify recurrent patterns of transcription variation related to cancer progression, and so produce new therapeutically-relevant insights. However, the presence of strong inter-tumor heterogeneity often obscures more...
Autores principales: | Liu, Yusha, Carbonetto, Peter, Willwerscheid, Jason, Oakes, Scott A., Macleod, Kay F., Stephens, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462040/ https://www.ncbi.nlm.nih.gov/pubmed/37645713 http://dx.doi.org/10.1101/2023.08.15.553436 |
Ejemplares similares
-
COCOA: coordinate covariation analysis of epigenetic heterogeneity
por: Lawson, John T., et al.
Publicado: (2020) -
Marginal models in analysis of correlated binary data with time dependent covariates
por: Wilson, Jeffrey R, et al.
Publicado: (2020) -
Estimation of covariance components between one continuous and one binary trait
por: Simianer, H, et al.
Publicado: (1989) -
Expression variation and covariation impair analog and enable binary signaling control
por: Kovary, Kyle M, et al.
Publicado: (2018) -
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023)