Cargando…

A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity

Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interf...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yang, Zhou, Yuchen, Ji, Xudong, Graham, Austin J., Dundas, Christopher M., Mahfoud, Ismar E. Miniel, Tibbett, Bailey M., Tan, Benjamin, Partipilo, Gina, Dodabalapur, Ananth, Rivnay, Jonathan, Keitz, Benjamin K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462107/
https://www.ncbi.nlm.nih.gov/pubmed/37645977
http://dx.doi.org/10.1101/2023.08.16.553547
_version_ 1785097990330908672
author Gao, Yang
Zhou, Yuchen
Ji, Xudong
Graham, Austin J.
Dundas, Christopher M.
Mahfoud, Ismar E. Miniel
Tibbett, Bailey M.
Tan, Benjamin
Partipilo, Gina
Dodabalapur, Ananth
Rivnay, Jonathan
Keitz, Benjamin K.
author_facet Gao, Yang
Zhou, Yuchen
Ji, Xudong
Graham, Austin J.
Dundas, Christopher M.
Mahfoud, Ismar E. Miniel
Tibbett, Bailey M.
Tan, Benjamin
Partipilo, Gina
Dodabalapur, Ananth
Rivnay, Jonathan
Keitz, Benjamin K.
author_sort Gao, Yang
collection PubMed
description Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacterium Shewanella oneidensis that enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) from S. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.
format Online
Article
Text
id pubmed-10462107
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104621072023-08-29 A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity Gao, Yang Zhou, Yuchen Ji, Xudong Graham, Austin J. Dundas, Christopher M. Mahfoud, Ismar E. Miniel Tibbett, Bailey M. Tan, Benjamin Partipilo, Gina Dodabalapur, Ananth Rivnay, Jonathan Keitz, Benjamin K. bioRxiv Article Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacterium Shewanella oneidensis that enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) from S. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements. Cold Spring Harbor Laboratory 2023-08-18 /pmc/articles/PMC10462107/ /pubmed/37645977 http://dx.doi.org/10.1101/2023.08.16.553547 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Gao, Yang
Zhou, Yuchen
Ji, Xudong
Graham, Austin J.
Dundas, Christopher M.
Mahfoud, Ismar E. Miniel
Tibbett, Bailey M.
Tan, Benjamin
Partipilo, Gina
Dodabalapur, Ananth
Rivnay, Jonathan
Keitz, Benjamin K.
A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity
title A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity
title_full A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity
title_fullStr A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity
title_full_unstemmed A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity
title_short A Hybrid Transistor with Transcriptionally Controlled Computation and Plasticity
title_sort hybrid transistor with transcriptionally controlled computation and plasticity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462107/
https://www.ncbi.nlm.nih.gov/pubmed/37645977
http://dx.doi.org/10.1101/2023.08.16.553547
work_keys_str_mv AT gaoyang ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT zhouyuchen ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT jixudong ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT grahamaustinj ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT dundaschristopherm ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT mahfoudismareminiel ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT tibbettbaileym ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT tanbenjamin ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT partipilogina ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT dodabalapurananth ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT rivnayjonathan ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT keitzbenjamink ahybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT gaoyang hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT zhouyuchen hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT jixudong hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT grahamaustinj hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT dundaschristopherm hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT mahfoudismareminiel hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT tibbettbaileym hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT tanbenjamin hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT partipilogina hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT dodabalapurananth hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT rivnayjonathan hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity
AT keitzbenjamink hybridtransistorwithtranscriptionallycontrolledcomputationandplasticity