Cargando…
Leak Proof PDBBind: A Reorganized Dataset of Protein-Ligand Complexes for More Generalizable Binding Affinity Prediction
Many physics-based and machine-learned scoring functions (SFs) used to predict protein-ligand binding free energies have been trained on the PDBBind dataset. However, it is controversial as to whether new SFs are actually improving since the general, refined, and core datasets of PDBBind are cross-c...
Autores principales: | Li, Jie, Guan, Xingyi, Zhang, Oufan, Sun, Kunyang, Wang, Yingze, Bagni, Dorian, Head-Gordon, Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462179/ https://www.ncbi.nlm.nih.gov/pubmed/37645037 |
Ejemplares similares
-
A Physics-Guided Neural Network for Predicting Protein–Ligand Binding Free Energy: From Host–Guest Systems to the PDBbind Database †
por: Cain, Sahar, et al.
Publicado: (2022) -
Can We Still Trust Docking Results? An Extension of the Applicability of DockBench on PDBbind Database
por: Bolcato, Giovanni, et al.
Publicado: (2019) -
A benchmark dataset for Hydrogen Combustion
por: Guan, Xingyi, et al.
Publicado: (2022) -
Dataset’s chemical diversity limits the generalizability of machine learning predictions
por: Glavatskikh, Marta, et al.
Publicado: (2019) -
Improving the generalizability of protein-ligand binding predictions with AI-Bind
por: Chatterjee, Ayan, et al.
Publicado: (2023)