Cargando…

Personalized coronary and myocardial blood flow models incorporating CT perfusion imaging and synthetic vascular trees

Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges – incomplete anatomies in image-based models due to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Menon, Karthik, Khan, Muhammed Owais, Sexton, Zachary A., Richter, Jakob, Nieman, Koen, Marsden, Alison L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462196/
https://www.ncbi.nlm.nih.gov/pubmed/37645850
http://dx.doi.org/10.1101/2023.08.17.23294242
Descripción
Sumario:Computational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges – incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary models combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. Personalized flow distributions and model parameters are informed by clinical CT myocardial perfusion imaging and cardiac function using surrogate-based optimization. We reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.