Cargando…

(1)H, (15)N, (13)C resonance assignments for proteasome shuttle factor hHR23a

hHR23a (human homolog of Rad23 a) functions in nucleotide excision repair and proteasome-mediated protein degradation. It contains an N-terminal ubiquitin-like (UBL) domain, an xeroderma pigmentosum C (XPC)-binding domain, and a ubiquitin-associated (UBA) domain preceding and following the XPC-bindi...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiang, Walters, Kylie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462248/
https://www.ncbi.nlm.nih.gov/pubmed/37645848
http://dx.doi.org/10.21203/rs.3.rs-3256627/v1
Descripción
Sumario:hHR23a (human homolog of Rad23 a) functions in nucleotide excision repair and proteasome-mediated protein degradation. It contains an N-terminal ubiquitin-like (UBL) domain, an xeroderma pigmentosum C (XPC)-binding domain, and a ubiquitin-associated (UBA) domain preceding and following the XPC-binding domain. Each of the four structural domains are connected by flexible linker regions. We report in this NMR study, the (1)H, (15)N and (13)C resonance assignments for the backbone and sidechain atoms of the hHR23a full-length protein with BioMagResBank accession number 52059. Assignments are 97% and 87% for the backbone ((N)H, N, C’, Cα, and Hα) and sidechain atoms of the hHR23a structured regions. The secondary structural elements predicted from the NMR data fit well to the hHR23a NMR structure. The assignments described in this manuscript can be used to apply NMR for studies of hHR23a with its binding partners.