Cargando…
Comparative performances of machine learning algorithms in radiomics and impacting factors
There are no current recommendations on which machine learning (ML) algorithms should be used in radiomics. The objective was to compare performances of ML algorithms in radiomics when applied to different clinical questions to determine whether some strategies could give the best and most stable pe...
Autores principales: | Decoux, Antoine, Duron, Loic, Habert, Paul, Roblot, Victoire, Arsovic, Emina, Chassagnon, Guillaume, Arnoux, Armelle, Fournier, Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462640/ https://www.ncbi.nlm.nih.gov/pubmed/37640728 http://dx.doi.org/10.1038/s41598-023-39738-7 |
Ejemplares similares
-
Best imaging signs identified by radiomics could outperform the model: application to differentiating lung carcinoid tumors from atypical hamartomas
por: Habert, Paul, et al.
Publicado: (2023) -
Gray-level discretization impacts reproducible MRI radiomics texture features
por: Duron, Loïc, et al.
Publicado: (2019) -
Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance
por: Debbi, Kawtar, et al.
Publicado: (2023) -
Combining Multiple Magnetic Resonance Imaging Sequences Provides Independent Reproducible Radiomics Features
por: Lecler, A., et al.
Publicado: (2019) -
Integrating radiomics into holomics for personalised oncology: from algorithms to bedside
por: Gatta, Roberto, et al.
Publicado: (2020)