Cargando…

Epigenome-wide DNA methylation association study of circulating IgE levels identifies novel targets for asthma

BACKGROUND: Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS: We performed an epigenome-wide association study using whole blood from Framingham Heart Study...

Descripción completa

Detalles Bibliográficos
Autores principales: Recto, Kathryn, Kachroo, Priyadarshini, Huan, Tianxiao, Van Den Berg, David, Lee, Gha Young, Bui, Helena, Lee, Dong Heon, Gereige, Jessica, Yao, Chen, Hwang, Shih-Jen, Joehanes, Roby, Weiss, Scott T., O’Connor, George T., Levy, Daniel, DeMeo, Dawn L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462855/
https://www.ncbi.nlm.nih.gov/pubmed/37598461
http://dx.doi.org/10.1016/j.ebiom.2023.104758
Descripción
Sumario:BACKGROUND: Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS: We performed an epigenome-wide association study using whole blood from Framingham Heart Study (FHS; n = 3,471, 46% females) participants and validated results using the Childhood Asthma Management Program (CAMP; n = 674, 39% females) and the Genetic Epidemiology of Asthma in Costa Rica Study (CRA; n = 787, 41% females). Using the closest gene to each IgE-associated CpG, we highlighted biologically plausible pathways underlying IgE regulation and analyzed the transcription patterns linked to IgE-associated CpGs (expression quantitative trait methylation loci; eQTMs). Using prior UK Biobank summary data from genome-wide association studies of asthma and allergy, we performed Mendelian randomization (MR) for causal inference testing using the IgE-associated CpGs from FHS with methylation quantitative trait loci (mQTLs) as instrumental variables. FINDINGS: We identified 490 statistically significant differentially methylated CpGs associated with IgE in FHS, of which 193 (39.3%) replicated in CAMP and CRA (FDR < 0.05). Gene ontology analysis revealed enrichment in pathways related to transcription factor binding, asthma, and other immunological processes. eQTM analysis identified 124 cis-eQTMs for 106 expressed genes (FDR < 0.05). MR in combination with drug-target analysis revealed CTSB and USP20 as putatively causal regulators of IgE levels (Bonferroni adjusted P < 7.94E-04) that can be explored as potential therapeutic targets. INTERPRETATION: By integrating eQTM and MR analyses in general and clinical asthma populations, our findings provide a deeper understanding of the multidimensional inter-relations of DNA methylation, gene expression, and IgE levels. FUNDING: US 10.13039/100000002NIH/10.13039/100000050NHLBI grants: P01HL132825, K99HL159234. N01-HC-25195 and HHSN268201500001I.