Cargando…
Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
OBJECTIVES: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitmen...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463256/ https://www.ncbi.nlm.nih.gov/pubmed/37649530 http://dx.doi.org/10.1016/j.ocarto.2023.100406 |
_version_ | 1785098189384187904 |
---|---|
author | Widera, Paweł Welsing, Paco M.J. Danso, Samuel O. Peelen, Sjaak Kloppenburg, Margreet Loef, Marieke Marijnissen, Anne C. van Helvoort, Eefje M. Blanco, Francisco J. Magalhães, Joana Berenbaum, Francis Haugen, Ida K. Bay-Jensen, Anne-Christine Mobasheri, Ali Ladel, Christoph Loughlin, John Lafeber, Floris P.J.G. Lalande, Agnès Larkin, Jonathan Weinans, Harrie Bacardit, Jaume |
author_facet | Widera, Paweł Welsing, Paco M.J. Danso, Samuel O. Peelen, Sjaak Kloppenburg, Margreet Loef, Marieke Marijnissen, Anne C. van Helvoort, Eefje M. Blanco, Francisco J. Magalhães, Joana Berenbaum, Francis Haugen, Ida K. Bay-Jensen, Anne-Christine Mobasheri, Ali Ladel, Christoph Loughlin, John Lafeber, Floris P.J.G. Lalande, Agnès Larkin, Jonathan Weinans, Harrie Bacardit, Jaume |
author_sort | Widera, Paweł |
collection | PubMed |
description | OBJECTIVES: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. DESIGN: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. RESULTS: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P + S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P + S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). CONCLUSIONS: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial. |
format | Online Article Text |
id | pubmed-10463256 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104632562023-08-30 Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study Widera, Paweł Welsing, Paco M.J. Danso, Samuel O. Peelen, Sjaak Kloppenburg, Margreet Loef, Marieke Marijnissen, Anne C. van Helvoort, Eefje M. Blanco, Francisco J. Magalhães, Joana Berenbaum, Francis Haugen, Ida K. Bay-Jensen, Anne-Christine Mobasheri, Ali Ladel, Christoph Loughlin, John Lafeber, Floris P.J.G. Lalande, Agnès Larkin, Jonathan Weinans, Harrie Bacardit, Jaume Osteoarthr Cartil Open ORIGINAL PAPER OBJECTIVES: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. DESIGN: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. RESULTS: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P + S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P + S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). CONCLUSIONS: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial. Elsevier 2023-08-18 /pmc/articles/PMC10463256/ /pubmed/37649530 http://dx.doi.org/10.1016/j.ocarto.2023.100406 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | ORIGINAL PAPER Widera, Paweł Welsing, Paco M.J. Danso, Samuel O. Peelen, Sjaak Kloppenburg, Margreet Loef, Marieke Marijnissen, Anne C. van Helvoort, Eefje M. Blanco, Francisco J. Magalhães, Joana Berenbaum, Francis Haugen, Ida K. Bay-Jensen, Anne-Christine Mobasheri, Ali Ladel, Christoph Loughlin, John Lafeber, Floris P.J.G. Lalande, Agnès Larkin, Jonathan Weinans, Harrie Bacardit, Jaume Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study |
title | Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study |
title_full | Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study |
title_fullStr | Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study |
title_full_unstemmed | Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study |
title_short | Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study |
title_sort | development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the imi-approach study |
topic | ORIGINAL PAPER |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463256/ https://www.ncbi.nlm.nih.gov/pubmed/37649530 http://dx.doi.org/10.1016/j.ocarto.2023.100406 |
work_keys_str_mv | AT widerapaweł developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT welsingpacomj developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT dansosamuelo developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT peelensjaak developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT kloppenburgmargreet developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT loefmarieke developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT marijnissenannec developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT vanhelvoorteefjem developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT blancofranciscoj developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT magalhaesjoana developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT berenbaumfrancis developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT haugenidak developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT bayjensenannechristine developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT mobasheriali developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT ladelchristoph developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT loughlinjohn developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT lafeberflorispjg developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT lalandeagnes developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT larkinjonathan developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT weinansharrie developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy AT bacarditjaume developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy |