Cargando…

Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study

OBJECTIVES: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitmen...

Descripción completa

Detalles Bibliográficos
Autores principales: Widera, Paweł, Welsing, Paco M.J., Danso, Samuel O., Peelen, Sjaak, Kloppenburg, Margreet, Loef, Marieke, Marijnissen, Anne C., van Helvoort, Eefje M., Blanco, Francisco J., Magalhães, Joana, Berenbaum, Francis, Haugen, Ida K., Bay-Jensen, Anne-Christine, Mobasheri, Ali, Ladel, Christoph, Loughlin, John, Lafeber, Floris P.J.G., Lalande, Agnès, Larkin, Jonathan, Weinans, Harrie, Bacardit, Jaume
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463256/
https://www.ncbi.nlm.nih.gov/pubmed/37649530
http://dx.doi.org/10.1016/j.ocarto.2023.100406
_version_ 1785098189384187904
author Widera, Paweł
Welsing, Paco M.J.
Danso, Samuel O.
Peelen, Sjaak
Kloppenburg, Margreet
Loef, Marieke
Marijnissen, Anne C.
van Helvoort, Eefje M.
Blanco, Francisco J.
Magalhães, Joana
Berenbaum, Francis
Haugen, Ida K.
Bay-Jensen, Anne-Christine
Mobasheri, Ali
Ladel, Christoph
Loughlin, John
Lafeber, Floris P.J.G.
Lalande, Agnès
Larkin, Jonathan
Weinans, Harrie
Bacardit, Jaume
author_facet Widera, Paweł
Welsing, Paco M.J.
Danso, Samuel O.
Peelen, Sjaak
Kloppenburg, Margreet
Loef, Marieke
Marijnissen, Anne C.
van Helvoort, Eefje M.
Blanco, Francisco J.
Magalhães, Joana
Berenbaum, Francis
Haugen, Ida K.
Bay-Jensen, Anne-Christine
Mobasheri, Ali
Ladel, Christoph
Loughlin, John
Lafeber, Floris P.J.G.
Lalande, Agnès
Larkin, Jonathan
Weinans, Harrie
Bacardit, Jaume
author_sort Widera, Paweł
collection PubMed
description OBJECTIVES: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. DESIGN: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. RESULTS: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ​+ ​S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ​+ ​S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). CONCLUSIONS: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial.
format Online
Article
Text
id pubmed-10463256
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104632562023-08-30 Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study Widera, Paweł Welsing, Paco M.J. Danso, Samuel O. Peelen, Sjaak Kloppenburg, Margreet Loef, Marieke Marijnissen, Anne C. van Helvoort, Eefje M. Blanco, Francisco J. Magalhães, Joana Berenbaum, Francis Haugen, Ida K. Bay-Jensen, Anne-Christine Mobasheri, Ali Ladel, Christoph Loughlin, John Lafeber, Floris P.J.G. Lalande, Agnès Larkin, Jonathan Weinans, Harrie Bacardit, Jaume Osteoarthr Cartil Open ORIGINAL PAPER OBJECTIVES: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. DESIGN: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. RESULTS: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ​+ ​S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ​+ ​S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). CONCLUSIONS: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial. Elsevier 2023-08-18 /pmc/articles/PMC10463256/ /pubmed/37649530 http://dx.doi.org/10.1016/j.ocarto.2023.100406 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle ORIGINAL PAPER
Widera, Paweł
Welsing, Paco M.J.
Danso, Samuel O.
Peelen, Sjaak
Kloppenburg, Margreet
Loef, Marieke
Marijnissen, Anne C.
van Helvoort, Eefje M.
Blanco, Francisco J.
Magalhães, Joana
Berenbaum, Francis
Haugen, Ida K.
Bay-Jensen, Anne-Christine
Mobasheri, Ali
Ladel, Christoph
Loughlin, John
Lafeber, Floris P.J.G.
Lalande, Agnès
Larkin, Jonathan
Weinans, Harrie
Bacardit, Jaume
Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
title Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
title_full Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
title_fullStr Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
title_full_unstemmed Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
title_short Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
title_sort development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the imi-approach study
topic ORIGINAL PAPER
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463256/
https://www.ncbi.nlm.nih.gov/pubmed/37649530
http://dx.doi.org/10.1016/j.ocarto.2023.100406
work_keys_str_mv AT widerapaweł developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT welsingpacomj developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT dansosamuelo developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT peelensjaak developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT kloppenburgmargreet developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT loefmarieke developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT marijnissenannec developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT vanhelvoorteefjem developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT blancofranciscoj developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT magalhaesjoana developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT berenbaumfrancis developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT haugenidak developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT bayjensenannechristine developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT mobasheriali developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT ladelchristoph developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT loughlinjohn developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT lafeberflorispjg developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT lalandeagnes developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT larkinjonathan developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT weinansharrie developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy
AT bacarditjaume developmentandvalidationofamachinelearningsupportedstrategyofpatientselectionforosteoarthritisclinicaltrialstheimiapproachstudy