Cargando…
Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model
BACKGROUND: Efficient and site-specific weed management is a critical step in many agricultural tasks. Image captures from drones and modern machine learning based computer vision methods can be used to assess weed infestation in agricultural fields more efficiently. However, the image quality of th...
Autores principales: | Genze, Nikita, Wirth, Maximilian, Schreiner, Christian, Ajekwe, Raymond, Grieb, Michael, Grimm, Dominik G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463442/ https://www.ncbi.nlm.nih.gov/pubmed/37608384 http://dx.doi.org/10.1186/s13007-023-01060-8 |
Ejemplares similares
-
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
por: Nong, Chunshi, et al.
Publicado: (2022) -
Blind UAV Images Deblurring Based on Discriminative Networks
por: Wang, Ruihua, et al.
Publicado: (2018) -
WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image
por: Yun, Chaeyeong, et al.
Publicado: (2023) -
Detecting Sorghum Plant and Head Features from Multispectral UAV Imagery
por: Zhao, Yan, et al.
Publicado: (2021) -
Improving the Neural Segmentation of Blurry Serial SEM Images by Blind Deblurring
por: Cheng, Ao, et al.
Publicado: (2023)