Cargando…
High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data
BACKGROUND: Biomass accumulation as a growth indicator can be significant in achieving high and stable soybean yields. More robust genotypes have a better potential for exploiting available resources such as water or sunlight. Biomass data implemented as a new trait in soybean breeding programs coul...
Autores principales: | Ranđelović, Predrag, Đorđević, Vuk, Miladinović, Jegor, Prodanović, Slaven, Ćeran, Marina, Vollmann, Johann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463513/ https://www.ncbi.nlm.nih.gov/pubmed/37633921 http://dx.doi.org/10.1186/s13007-023-01054-6 |
Ejemplares similares
-
Allelic Variation and Distribution of the Major Maturity Genes in Different Soybean Collections
por: Miladinović, Jegor, et al.
Publicado: (2018) -
Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material
por: Miladinović, Jegor, et al.
Publicado: (2019) -
Author Correction: Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material
por: Miladinović, Jegor, et al.
Publicado: (2019) -
High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV
por: Li, Fei, et al.
Publicado: (2020) -
High-Throughput Phenotyping and Random Regression Models Reveal Temporal Genetic Control of Soybean Biomass Production
por: Freitas Moreira, Fabiana, et al.
Publicado: (2021)