Cargando…
Development and comparison of machine learning-based models for predicting heart failure after acute myocardial infarction
AIMS: Heart failure (HF) is one of the common adverse cardiovascular events after acute myocardial infarction (AMI), but the predictive efficacy of numerous machine learning (ML) built models is unclear. This study aimed to build an optimal model to predict the occurrence of HF in AMI patients by co...
Autores principales: | Li, Xuewen, Shang, Chengming, Xu, Changyan, Wang, Yiting, Xu, Jiancheng, Zhou, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463624/ https://www.ncbi.nlm.nih.gov/pubmed/37620904 http://dx.doi.org/10.1186/s12911-023-02240-1 |
Ejemplares similares
-
Machine Learning to Predict the Likelihood of Acute Myocardial Infarction
por: Than, Martin P., et al.
Publicado: (2019) -
Machine learning prediction of mortality in Acute Myocardial Infarction
por: Oliveira, Mariana, et al.
Publicado: (2023) -
The Biomarkers for Acute Myocardial Infarction and Heart Failure
por: Wang, Xi-Ying, et al.
Publicado: (2020) -
Pentraxin 3 depletion (PTX3 KD) inhibited myocardial fibrosis in heart failure after myocardial infarction
por: Xu, Yufang, et al.
Publicado: (2022) -
Myocardial Longitudinal Strain in Prediction of Heart Failure after Acute Myocardial Infarction
por: Chung, Hyemoon
Publicado: (2019)