Cargando…

Ariadne: synthetic long read deconvolution using assembly graphs

Synthetic long read sequencing techniques such as UST’s TELL-Seq and Loop Genomics’ LoopSeq combine 3[Formula: see text] barcoding with standard short-read sequencing to expand the range of linkage resolution from hundreds to tens of thousands of base-pairs. However, the lack of a 1:1 correspondence...

Descripción completa

Detalles Bibliográficos
Autores principales: Mak, Lauren, Meleshko, Dmitry, Danko, David C., Barakzai, Waris N., Maharjan, Salil, Belchikov, Natan, Hajirasouliha, Iman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463629/
https://www.ncbi.nlm.nih.gov/pubmed/37641111
http://dx.doi.org/10.1186/s13059-023-03033-5
_version_ 1785098276370907136
author Mak, Lauren
Meleshko, Dmitry
Danko, David C.
Barakzai, Waris N.
Maharjan, Salil
Belchikov, Natan
Hajirasouliha, Iman
author_facet Mak, Lauren
Meleshko, Dmitry
Danko, David C.
Barakzai, Waris N.
Maharjan, Salil
Belchikov, Natan
Hajirasouliha, Iman
author_sort Mak, Lauren
collection PubMed
description Synthetic long read sequencing techniques such as UST’s TELL-Seq and Loop Genomics’ LoopSeq combine 3[Formula: see text] barcoding with standard short-read sequencing to expand the range of linkage resolution from hundreds to tens of thousands of base-pairs. However, the lack of a 1:1 correspondence between a long fragment and a 3[Formula: see text] unique molecular identifier confounds the assignment of linkage between short reads. We introduce Ariadne, a novel assembly graph-based synthetic long read deconvolution algorithm, that can be used to extract single-species read-clouds from synthetic long read datasets to improve the taxonomic classification and de novo assembly of complex populations, such as metagenomes.
format Online
Article
Text
id pubmed-10463629
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-104636292023-08-30 Ariadne: synthetic long read deconvolution using assembly graphs Mak, Lauren Meleshko, Dmitry Danko, David C. Barakzai, Waris N. Maharjan, Salil Belchikov, Natan Hajirasouliha, Iman Genome Biol Method Synthetic long read sequencing techniques such as UST’s TELL-Seq and Loop Genomics’ LoopSeq combine 3[Formula: see text] barcoding with standard short-read sequencing to expand the range of linkage resolution from hundreds to tens of thousands of base-pairs. However, the lack of a 1:1 correspondence between a long fragment and a 3[Formula: see text] unique molecular identifier confounds the assignment of linkage between short reads. We introduce Ariadne, a novel assembly graph-based synthetic long read deconvolution algorithm, that can be used to extract single-species read-clouds from synthetic long read datasets to improve the taxonomic classification and de novo assembly of complex populations, such as metagenomes. BioMed Central 2023-08-28 /pmc/articles/PMC10463629/ /pubmed/37641111 http://dx.doi.org/10.1186/s13059-023-03033-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Mak, Lauren
Meleshko, Dmitry
Danko, David C.
Barakzai, Waris N.
Maharjan, Salil
Belchikov, Natan
Hajirasouliha, Iman
Ariadne: synthetic long read deconvolution using assembly graphs
title Ariadne: synthetic long read deconvolution using assembly graphs
title_full Ariadne: synthetic long read deconvolution using assembly graphs
title_fullStr Ariadne: synthetic long read deconvolution using assembly graphs
title_full_unstemmed Ariadne: synthetic long read deconvolution using assembly graphs
title_short Ariadne: synthetic long read deconvolution using assembly graphs
title_sort ariadne: synthetic long read deconvolution using assembly graphs
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463629/
https://www.ncbi.nlm.nih.gov/pubmed/37641111
http://dx.doi.org/10.1186/s13059-023-03033-5
work_keys_str_mv AT maklauren ariadnesyntheticlongreaddeconvolutionusingassemblygraphs
AT meleshkodmitry ariadnesyntheticlongreaddeconvolutionusingassemblygraphs
AT dankodavidc ariadnesyntheticlongreaddeconvolutionusingassemblygraphs
AT barakzaiwarisn ariadnesyntheticlongreaddeconvolutionusingassemblygraphs
AT maharjansalil ariadnesyntheticlongreaddeconvolutionusingassemblygraphs
AT belchikovnatan ariadnesyntheticlongreaddeconvolutionusingassemblygraphs
AT hajirasoulihaiman ariadnesyntheticlongreaddeconvolutionusingassemblygraphs