Cargando…
Evaluation of convolutional neural networks for the detection of inter-breath-hold motion from a stack of cardiac short axis slice images
PURPOSE: This study aimed to develop and validate a deep learning-based method that detects inter-breath-hold motion from an estimated cardiac long axis image reconstructed from a stack of short axis cardiac cine images. METHODS: Cardiac cine magnetic resonance image data from all short axis slices...
Autores principales: | Kim, Yoon-Chul, Kim, Min Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463654/ https://www.ncbi.nlm.nih.gov/pubmed/37620849 http://dx.doi.org/10.1186/s12880-023-01070-x |
Ejemplares similares
-
Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification
por: Ho, Namgyu, et al.
Publicado: (2021) -
Estimation of Cardiac Short Axis Slice Levels with a Cascaded Deep Convolutional and Recurrent Neural Network Model
por: Ho, Namgyu, et al.
Publicado: (2022) -
Multi slice DENSE in a single breath hold
por: Sigfridsson, Andreas, et al.
Publicado: (2009) -
Defining short and prolonged breath-holds
por: Parkes, Michael, et al.
Publicado: (2020) -
Acquiring multiple slices in a single breath-hold. Is it practical for routine workflow?
por: Wage, Ricardo, et al.
Publicado: (2009)