Cargando…
MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug–target interaction
BACKGROUND: Prediction of drug–target interaction (DTI) is an essential step for drug discovery and drug reposition. Traditional methods are mostly time-consuming and labor-intensive, and deep learning-based methods address these limitations and are applied to engineering. Most of the current deep l...
Autores principales: | Qian, Ying, Li, Xinyi, Wu, Jian, Zhang, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463755/ https://www.ncbi.nlm.nih.gov/pubmed/37633938 http://dx.doi.org/10.1186/s12859-023-05447-1 |
Ejemplares similares
-
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021) -
AMMVF-DTI: A Novel Model Predicting Drug–Target Interactions Based on Attention Mechanism and Multi-View Fusion
por: Wang, Lu, et al.
Publicado: (2023) -
DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
por: Lee, Ingoo, et al.
Publicado: (2019) -
DTI-BERT: Identifying Drug-Target Interactions in Cellular Networking Based on BERT and Deep Learning Method
por: Zheng, Jie, et al.
Publicado: (2022) -
Bi-directional drug-microbiome interactions of anti-diabetics
por: Whang, Andrew, et al.
Publicado: (2018)