_version_ 1785098366255890432
author Krause, Julia
Nickel, Alexander
Madsen, Alexandra
Aitken-Buck, Hamish M.
Stoter, A. M. Stella
Schrapers, Jessica
Ojeda, Francisco
Geiger, Kira
Kern, Melanie
Kohlhaas, Michael
Bertero, Edoardo
Hofmockel, Patrick
Hübner, Florian
Assum, Ines
Heinig, Matthias
Müller, Christian
Hansen, Arne
Krause, Tobias
Park, Deung-Dae
Just, Steffen
Aïssi, Dylan
Börnigen, Daniela
Lindner, Diana
Friedrich, Nele
Alhussini, Khaled
Bening, Constanze
Schnabel, Renate B.
Karakas, Mahir
Iacoviello, Licia
Salomaa, Veikko
Linneberg, Allan
Tunstall-Pedoe, Hugh
Kuulasmaa, Kari
Kirchhof, Paulus
Blankenberg, Stefan
Christ, Torsten
Eschenhagen, Thomas
Lamberts, Regis R.
Maack, Christoph
Stenzig, Justus
Zeller, Tanja
author_facet Krause, Julia
Nickel, Alexander
Madsen, Alexandra
Aitken-Buck, Hamish M.
Stoter, A. M. Stella
Schrapers, Jessica
Ojeda, Francisco
Geiger, Kira
Kern, Melanie
Kohlhaas, Michael
Bertero, Edoardo
Hofmockel, Patrick
Hübner, Florian
Assum, Ines
Heinig, Matthias
Müller, Christian
Hansen, Arne
Krause, Tobias
Park, Deung-Dae
Just, Steffen
Aïssi, Dylan
Börnigen, Daniela
Lindner, Diana
Friedrich, Nele
Alhussini, Khaled
Bening, Constanze
Schnabel, Renate B.
Karakas, Mahir
Iacoviello, Licia
Salomaa, Veikko
Linneberg, Allan
Tunstall-Pedoe, Hugh
Kuulasmaa, Kari
Kirchhof, Paulus
Blankenberg, Stefan
Christ, Torsten
Eschenhagen, Thomas
Lamberts, Regis R.
Maack, Christoph
Stenzig, Justus
Zeller, Tanja
author_sort Krause, Julia
collection PubMed
description BACKGROUND: Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. METHODS AND RESULTS: Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca(2+) handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. CONCLUSION: Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04420-z.
format Online
Article
Text
id pubmed-10464005
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-104640052023-08-30 An arrhythmogenic metabolite in atrial fibrillation Krause, Julia Nickel, Alexander Madsen, Alexandra Aitken-Buck, Hamish M. Stoter, A. M. Stella Schrapers, Jessica Ojeda, Francisco Geiger, Kira Kern, Melanie Kohlhaas, Michael Bertero, Edoardo Hofmockel, Patrick Hübner, Florian Assum, Ines Heinig, Matthias Müller, Christian Hansen, Arne Krause, Tobias Park, Deung-Dae Just, Steffen Aïssi, Dylan Börnigen, Daniela Lindner, Diana Friedrich, Nele Alhussini, Khaled Bening, Constanze Schnabel, Renate B. Karakas, Mahir Iacoviello, Licia Salomaa, Veikko Linneberg, Allan Tunstall-Pedoe, Hugh Kuulasmaa, Kari Kirchhof, Paulus Blankenberg, Stefan Christ, Torsten Eschenhagen, Thomas Lamberts, Regis R. Maack, Christoph Stenzig, Justus Zeller, Tanja J Transl Med Research BACKGROUND: Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. METHODS AND RESULTS: Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca(2+) handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. CONCLUSION: Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04420-z. BioMed Central 2023-08-24 /pmc/articles/PMC10464005/ /pubmed/37620858 http://dx.doi.org/10.1186/s12967-023-04420-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Krause, Julia
Nickel, Alexander
Madsen, Alexandra
Aitken-Buck, Hamish M.
Stoter, A. M. Stella
Schrapers, Jessica
Ojeda, Francisco
Geiger, Kira
Kern, Melanie
Kohlhaas, Michael
Bertero, Edoardo
Hofmockel, Patrick
Hübner, Florian
Assum, Ines
Heinig, Matthias
Müller, Christian
Hansen, Arne
Krause, Tobias
Park, Deung-Dae
Just, Steffen
Aïssi, Dylan
Börnigen, Daniela
Lindner, Diana
Friedrich, Nele
Alhussini, Khaled
Bening, Constanze
Schnabel, Renate B.
Karakas, Mahir
Iacoviello, Licia
Salomaa, Veikko
Linneberg, Allan
Tunstall-Pedoe, Hugh
Kuulasmaa, Kari
Kirchhof, Paulus
Blankenberg, Stefan
Christ, Torsten
Eschenhagen, Thomas
Lamberts, Regis R.
Maack, Christoph
Stenzig, Justus
Zeller, Tanja
An arrhythmogenic metabolite in atrial fibrillation
title An arrhythmogenic metabolite in atrial fibrillation
title_full An arrhythmogenic metabolite in atrial fibrillation
title_fullStr An arrhythmogenic metabolite in atrial fibrillation
title_full_unstemmed An arrhythmogenic metabolite in atrial fibrillation
title_short An arrhythmogenic metabolite in atrial fibrillation
title_sort arrhythmogenic metabolite in atrial fibrillation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464005/
https://www.ncbi.nlm.nih.gov/pubmed/37620858
http://dx.doi.org/10.1186/s12967-023-04420-z
work_keys_str_mv AT krausejulia anarrhythmogenicmetaboliteinatrialfibrillation
AT nickelalexander anarrhythmogenicmetaboliteinatrialfibrillation
AT madsenalexandra anarrhythmogenicmetaboliteinatrialfibrillation
AT aitkenbuckhamishm anarrhythmogenicmetaboliteinatrialfibrillation
AT stoteramstella anarrhythmogenicmetaboliteinatrialfibrillation
AT schrapersjessica anarrhythmogenicmetaboliteinatrialfibrillation
AT ojedafrancisco anarrhythmogenicmetaboliteinatrialfibrillation
AT geigerkira anarrhythmogenicmetaboliteinatrialfibrillation
AT kernmelanie anarrhythmogenicmetaboliteinatrialfibrillation
AT kohlhaasmichael anarrhythmogenicmetaboliteinatrialfibrillation
AT berteroedoardo anarrhythmogenicmetaboliteinatrialfibrillation
AT hofmockelpatrick anarrhythmogenicmetaboliteinatrialfibrillation
AT hubnerflorian anarrhythmogenicmetaboliteinatrialfibrillation
AT assumines anarrhythmogenicmetaboliteinatrialfibrillation
AT heinigmatthias anarrhythmogenicmetaboliteinatrialfibrillation
AT mullerchristian anarrhythmogenicmetaboliteinatrialfibrillation
AT hansenarne anarrhythmogenicmetaboliteinatrialfibrillation
AT krausetobias anarrhythmogenicmetaboliteinatrialfibrillation
AT parkdeungdae anarrhythmogenicmetaboliteinatrialfibrillation
AT juststeffen anarrhythmogenicmetaboliteinatrialfibrillation
AT aissidylan anarrhythmogenicmetaboliteinatrialfibrillation
AT bornigendaniela anarrhythmogenicmetaboliteinatrialfibrillation
AT lindnerdiana anarrhythmogenicmetaboliteinatrialfibrillation
AT friedrichnele anarrhythmogenicmetaboliteinatrialfibrillation
AT alhussinikhaled anarrhythmogenicmetaboliteinatrialfibrillation
AT beningconstanze anarrhythmogenicmetaboliteinatrialfibrillation
AT schnabelrenateb anarrhythmogenicmetaboliteinatrialfibrillation
AT karakasmahir anarrhythmogenicmetaboliteinatrialfibrillation
AT iacoviellolicia anarrhythmogenicmetaboliteinatrialfibrillation
AT salomaaveikko anarrhythmogenicmetaboliteinatrialfibrillation
AT linnebergallan anarrhythmogenicmetaboliteinatrialfibrillation
AT tunstallpedoehugh anarrhythmogenicmetaboliteinatrialfibrillation
AT kuulasmaakari anarrhythmogenicmetaboliteinatrialfibrillation
AT kirchhofpaulus anarrhythmogenicmetaboliteinatrialfibrillation
AT blankenbergstefan anarrhythmogenicmetaboliteinatrialfibrillation
AT christtorsten anarrhythmogenicmetaboliteinatrialfibrillation
AT eschenhagenthomas anarrhythmogenicmetaboliteinatrialfibrillation
AT lambertsregisr anarrhythmogenicmetaboliteinatrialfibrillation
AT maackchristoph anarrhythmogenicmetaboliteinatrialfibrillation
AT stenzigjustus anarrhythmogenicmetaboliteinatrialfibrillation
AT zellertanja anarrhythmogenicmetaboliteinatrialfibrillation
AT krausejulia arrhythmogenicmetaboliteinatrialfibrillation
AT nickelalexander arrhythmogenicmetaboliteinatrialfibrillation
AT madsenalexandra arrhythmogenicmetaboliteinatrialfibrillation
AT aitkenbuckhamishm arrhythmogenicmetaboliteinatrialfibrillation
AT stoteramstella arrhythmogenicmetaboliteinatrialfibrillation
AT schrapersjessica arrhythmogenicmetaboliteinatrialfibrillation
AT ojedafrancisco arrhythmogenicmetaboliteinatrialfibrillation
AT geigerkira arrhythmogenicmetaboliteinatrialfibrillation
AT kernmelanie arrhythmogenicmetaboliteinatrialfibrillation
AT kohlhaasmichael arrhythmogenicmetaboliteinatrialfibrillation
AT berteroedoardo arrhythmogenicmetaboliteinatrialfibrillation
AT hofmockelpatrick arrhythmogenicmetaboliteinatrialfibrillation
AT hubnerflorian arrhythmogenicmetaboliteinatrialfibrillation
AT assumines arrhythmogenicmetaboliteinatrialfibrillation
AT heinigmatthias arrhythmogenicmetaboliteinatrialfibrillation
AT mullerchristian arrhythmogenicmetaboliteinatrialfibrillation
AT hansenarne arrhythmogenicmetaboliteinatrialfibrillation
AT krausetobias arrhythmogenicmetaboliteinatrialfibrillation
AT parkdeungdae arrhythmogenicmetaboliteinatrialfibrillation
AT juststeffen arrhythmogenicmetaboliteinatrialfibrillation
AT aissidylan arrhythmogenicmetaboliteinatrialfibrillation
AT bornigendaniela arrhythmogenicmetaboliteinatrialfibrillation
AT lindnerdiana arrhythmogenicmetaboliteinatrialfibrillation
AT friedrichnele arrhythmogenicmetaboliteinatrialfibrillation
AT alhussinikhaled arrhythmogenicmetaboliteinatrialfibrillation
AT beningconstanze arrhythmogenicmetaboliteinatrialfibrillation
AT schnabelrenateb arrhythmogenicmetaboliteinatrialfibrillation
AT karakasmahir arrhythmogenicmetaboliteinatrialfibrillation
AT iacoviellolicia arrhythmogenicmetaboliteinatrialfibrillation
AT salomaaveikko arrhythmogenicmetaboliteinatrialfibrillation
AT linnebergallan arrhythmogenicmetaboliteinatrialfibrillation
AT tunstallpedoehugh arrhythmogenicmetaboliteinatrialfibrillation
AT kuulasmaakari arrhythmogenicmetaboliteinatrialfibrillation
AT kirchhofpaulus arrhythmogenicmetaboliteinatrialfibrillation
AT blankenbergstefan arrhythmogenicmetaboliteinatrialfibrillation
AT christtorsten arrhythmogenicmetaboliteinatrialfibrillation
AT eschenhagenthomas arrhythmogenicmetaboliteinatrialfibrillation
AT lambertsregisr arrhythmogenicmetaboliteinatrialfibrillation
AT maackchristoph arrhythmogenicmetaboliteinatrialfibrillation
AT stenzigjustus arrhythmogenicmetaboliteinatrialfibrillation
AT zellertanja arrhythmogenicmetaboliteinatrialfibrillation