Cargando…
‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.)
BACKGROUND: In plant breeding, one of the most cost-effective and efficient ways to increase genetic gain is to reduce the breeding cycle time. In general, modern breeding methods for self-pollinated crops should strive to develop fixed lines at the lowest possible cost and in the minimum possible a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464167/ https://www.ncbi.nlm.nih.gov/pubmed/37635239 http://dx.doi.org/10.1186/s13007-023-01067-1 |
_version_ | 1785098406626066432 |
---|---|
author | Kigoni, Milcah Choi, Megan Arbelaez, Juan David |
author_facet | Kigoni, Milcah Choi, Megan Arbelaez, Juan David |
author_sort | Kigoni, Milcah |
collection | PubMed |
description | BACKGROUND: In plant breeding, one of the most cost-effective and efficient ways to increase genetic gain is to reduce the breeding cycle time. In general, modern breeding methods for self-pollinated crops should strive to develop fixed lines at the lowest possible cost and in the minimum possible amount of time. Previous studies on spring oat (Avena sativa L.) showed that combining high plant density with limited soil fertility and moisture levels in a growth media like sand effectively decreases the time and cost of generating fixed single-seed descent lines. More recently, ‘speed breeding,’ or the exposure to prolonged photoperiod regimes of 22 h, has been shown to decrease flowering time in oat significantly. The goal of this study was to combine ‘speed breeding’ with high-density planting in a limited soil fertility media to reduce further the costs and time required to develop oat single-seed-descent lines. RESULTS: We grew oat plants at low density in potting-mix (control), high density in potting-mix (HD-soil), and high density in sand (HD-sand) under 16 and 22 h of day length. We observed that oat plants grown in HD-sand and exposed to 22 h day length reduced their flowering time by around 20 and 5 days on average compared to those grown in control conditions at 16 and 22 h, respectively. We also observed that 85% of plants grown at high density in sand produced a single seed when grown in bulk conditions. In contrast, only 40% of plants grown at high density in potting-mix produced a single seed. CONCLUSIONS: Our novel protocol showed that oat plants grown in high-density bulks, using sand media and 22-hour day length, reduced their flowering time by 20 days compared to control conditions and produced plants with single seeds, following closely single-seed descent assumptions while significantly reducing labor costs and greenhouse space. This methodology can be deployed in oat breeding programs to help them accelerate their rate of genetic grain for multiple traits. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13007-023-01067-1. |
format | Online Article Text |
id | pubmed-10464167 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-104641672023-08-30 ‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.) Kigoni, Milcah Choi, Megan Arbelaez, Juan David Plant Methods Methodology BACKGROUND: In plant breeding, one of the most cost-effective and efficient ways to increase genetic gain is to reduce the breeding cycle time. In general, modern breeding methods for self-pollinated crops should strive to develop fixed lines at the lowest possible cost and in the minimum possible amount of time. Previous studies on spring oat (Avena sativa L.) showed that combining high plant density with limited soil fertility and moisture levels in a growth media like sand effectively decreases the time and cost of generating fixed single-seed descent lines. More recently, ‘speed breeding,’ or the exposure to prolonged photoperiod regimes of 22 h, has been shown to decrease flowering time in oat significantly. The goal of this study was to combine ‘speed breeding’ with high-density planting in a limited soil fertility media to reduce further the costs and time required to develop oat single-seed-descent lines. RESULTS: We grew oat plants at low density in potting-mix (control), high density in potting-mix (HD-soil), and high density in sand (HD-sand) under 16 and 22 h of day length. We observed that oat plants grown in HD-sand and exposed to 22 h day length reduced their flowering time by around 20 and 5 days on average compared to those grown in control conditions at 16 and 22 h, respectively. We also observed that 85% of plants grown at high density in sand produced a single seed when grown in bulk conditions. In contrast, only 40% of plants grown at high density in potting-mix produced a single seed. CONCLUSIONS: Our novel protocol showed that oat plants grown in high-density bulks, using sand media and 22-hour day length, reduced their flowering time by 20 days compared to control conditions and produced plants with single seeds, following closely single-seed descent assumptions while significantly reducing labor costs and greenhouse space. This methodology can be deployed in oat breeding programs to help them accelerate their rate of genetic grain for multiple traits. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13007-023-01067-1. BioMed Central 2023-08-27 /pmc/articles/PMC10464167/ /pubmed/37635239 http://dx.doi.org/10.1186/s13007-023-01067-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Kigoni, Milcah Choi, Megan Arbelaez, Juan David ‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.) |
title | ‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.) |
title_full | ‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.) |
title_fullStr | ‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.) |
title_full_unstemmed | ‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.) |
title_short | ‘Single-Seed-SpeedBulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (Avena sativa L.) |
title_sort | ‘single-seed-speedbulks:’ a protocol that combines ‘speed breeding’ with a cost-efficient modified single-seed descent method for rapid-generation-advancement in oat (avena sativa l.) |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464167/ https://www.ncbi.nlm.nih.gov/pubmed/37635239 http://dx.doi.org/10.1186/s13007-023-01067-1 |
work_keys_str_mv | AT kigonimilcah singleseedspeedbulksaprotocolthatcombinesspeedbreedingwithacostefficientmodifiedsingleseeddescentmethodforrapidgenerationadvancementinoatavenasatival AT choimegan singleseedspeedbulksaprotocolthatcombinesspeedbreedingwithacostefficientmodifiedsingleseeddescentmethodforrapidgenerationadvancementinoatavenasatival AT arbelaezjuandavid singleseedspeedbulksaprotocolthatcombinesspeedbreedingwithacostefficientmodifiedsingleseeddescentmethodforrapidgenerationadvancementinoatavenasatival |