Cargando…
Microbiota profiles in the saliva, cancerous tissues and its companion paracancerous tissues among Chinese patients with lung cancer
BACKGROUND: Despite the growing interest in the impact of the gut microbiome on cancer, the relationship between the lung microbiome and lung cancer has received limited investigation. Additionally, the composition of the oral microbiome was found to differ from that of individuals with lung cancer,...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464170/ https://www.ncbi.nlm.nih.gov/pubmed/37641037 http://dx.doi.org/10.1186/s12866-023-02882-1 |
Sumario: | BACKGROUND: Despite the growing interest in the impact of the gut microbiome on cancer, the relationship between the lung microbiome and lung cancer has received limited investigation. Additionally, the composition of the oral microbiome was found to differ from that of individuals with lung cancer, indicating that these microorganisms may serve as potential biomarkers for the detection of lung cancer. METHODS: Forty-three Chinese lung cancer patients were enrolled in the current retrospective study and 16 S rRNA sequencing was performed on saliva, cancerous tissue (CT) and paracancerous tissue (PT) samples. RESULTS: Diversity and species richness were significantly different between the oral and lung microbiota. Lung microbiota were largely composed of the phyla Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. The relative abundance of Promicromonosporacea and Chloroflexi increased in CT, while Enterococcaceae and Enterococcus were enriched in PT (p<0.05). A cancer-related microbiota model was constructed and produced an area under the curve of 0.74 in the training set, indicating discrimination between subjects with and without cancer. CONCLUSIONS: Characterization of microbiota in saliva, CT and PT from Chinese lung cancer patients revealed little difference between CT and PT, indicating that the tumor and its microenvironment might influence the local microbiome. A model to distinguish between CT and PT was constructed, which has the potential to enhance our comprehension of the involvement of microbiota in the pathogenesis of lung cancer and identify novel therapeutic targets. |
---|