Cargando…
Modified hindfoot alignment radiological evaluation and application in the assessment of flatfoot
BACKGROUND: Alignment is indispensable for the foot and ankle function, especially in the hindfoot alignment. In the preoperative planning of patients with varus or valgus deformity, the precise measurement of the hindfoot alignment is important. A new method of photographing and measuring hindfoot...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464188/ https://www.ncbi.nlm.nih.gov/pubmed/37644473 http://dx.doi.org/10.1186/s12891-023-06824-w |
Sumario: | BACKGROUND: Alignment is indispensable for the foot and ankle function, especially in the hindfoot alignment. In the preoperative planning of patients with varus or valgus deformity, the precise measurement of the hindfoot alignment is important. A new method of photographing and measuring hindfoot alignment based on X-ray was proposed in this study, and it was applied in the assessment of flatfoot. METHODS: This study included 28 patients (40 feet) with flatfeet and 20 volunteers (40 feet) from January to December 2018. The hindfoot alignment shooting stand independently designed by our department was used to take hindfoot alignment X-rays at 10 degree, 15 degree, 20 degree, 25 degree, and 30 degree. We measured the modified tibio-hindfoot angle (THA) at the standard hindfoot aligment position (shooting at 20 degree) and evaluated consistency with the van Dijk method and the modified van Dijk method. In addition, we observed the visibility of the tibiotalar joint space from all imaging data at five projection angles and evaluated the consistency of the modified THA method at different projection angles. The angle of hindfoot valgus of flatfoot patients was measured using the modified THA method. RESULTS: The mean THA in the standard hindfoot aligment view in normal people was significantly different among the three evaluation methods (P < .001). The results from the modified THA method were significantly larger than those from the Van Dijk method (P < .001) and modified Van Dijk method (P < .001). There was no significant difference between the results of the modified THA method and the weightbearing CT (P = .605), and the intra- and intergroup consistency were the highest in the modified THA group. The tibiotalar space in the normal group was visible in all cases at 10 degree, 15 degree, and 20 degree; visible in some cases at 25 degree; and not visible in all cases at 30 degree. In the flatfoot group, the tibiotalar space was visible in all cases at 10 degree, visible in some cases at 15 degree and 20 degree, and not visible in all cases at 25 degree and 30 degree. In the normal group, the modified THA was 4.84 ± 1.81 degree at 10 degree, 4.96 ± 1.77 degree at 15 degree, and 4.94 ± 2.04 degree at 20 degree. No significant differences were found among the three groups (P = .616). In the flatfoot group, the modified THA of 18 feet, which was visible at 10 degree, 15 degree and 20 degree, was 13.58 ± 3.57 degree at 10 degree, 13.62 ± 3.83 degree at 15 degree and 13.38 ± 4.06 degree at 20 degree. There were no significant differences among the three groups (P = .425). CONCLUSIONS: The modified THA evaluation method is simple to use and has high inter- and intragroup consistency. It can be used to evaluate hindfoot alignment. For patients with flatfeet, the 10 degree position view and modified THA measurement can be used to evaluate hindfoot valgus. |
---|