Cargando…

Epidemiological characteristics of leukemia in China, 2005–2017: a log-linear regression and age-period-cohort analysis

BACKGROUND: Leukemia is a threat to human health, and there are relatively few studies on the incidence, mortality and disease burden analysis of leukemia in China. This study aimed to analyze the incidence and mortality rates of leukemia in China from 2005 to 2017 and estimate their age-period-coho...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Kangqian, Jia, Huaimiao, Cao, Miao, Xu, Tongtong, Chen, Zuhai, Song, Xi, Miao, Yingfang, Yao, Teng, Dong, Chenxian, Shao, Jianjiang, Guo, Heng, Hu, Yunhua, Yan, Yizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464264/
https://www.ncbi.nlm.nih.gov/pubmed/37641011
http://dx.doi.org/10.1186/s12889-023-16226-1
Descripción
Sumario:BACKGROUND: Leukemia is a threat to human health, and there are relatively few studies on the incidence, mortality and disease burden analysis of leukemia in China. This study aimed to analyze the incidence and mortality rates of leukemia in China from 2005 to 2017 and estimate their age-period-cohort effects, it is an important prerequisite for effective prevention and control of leukemia. METHODS: Leukemia incidence and mortality data from 2005 to 2017 were collected from the Chinese Cancer Registry Annual Report. Joinpoint regression model was used to estimate the average annual percentage change (AAPC) and annual percentage change (APC) response time trend. Age-period-cohort model was constructed to analyze the effects of age, period and cohort. RESULTS: The age-standardized incidence rate of leukemia was 4.54/100,000 from 2005 to 2017, showed an increasing trend with AAPC of 1.9% (95% CI: 1.3%, 2.5%). The age-standardized mortality rate was 2.91/100,000, showed an increasing trend from 2005 to 2012 with APC of 2.1% (95%CI: 0.4%, 3.9%) and then a decreasing trend from 2012 to 2017 with APC of -2.5% (95%CI: -5.3%, 0.3%). The age-standardized incidence (mortality) rates of leukemia were not only higher in males than that in females, but also increased more rapidly. The incidence of leukemia in rural areas was lower than in urban areas, but the AAPC was 2.2 times higher than urban areas. Children aged 0–4 years were at higher risk of leukemia. The risk of leukemia incidence and mortality increased with age. The period effect of leukemia mortality risk showed a decreasing trend, while the cohort effect showed an increasing and then decreasing trend with the turning point of 1955–1959. CONCLUSIONS: The age-standardized incidence rate of leukemia in China showed an increasing trend from 2005 to 2017, while the age-standardized mortality rate increased first and then decreased in 2012 as a turning point. Differences existed by gender and region. The risk of leukemia incidence and mortality increased accordingly with age. The risk of mortality due to leukemia gradually decreased from 2005 to 2017. Leukemia remains a public health problem that requires continuous attention.