Cargando…
Tracking longitudinal biomarkers in burn patients with sepsis and acute kidney injury: an unsupervised clustering approach
BACKGROUND: Sepsis is a grave medical disorder characterized by a systemic inflammatory response to infection. Furthermore, it is a leading cause of morbidity and mortality, especially in hospitalized patients. Acute kidney injury (AKI) is a common complication of sepsis and is associated with incre...
Autores principales: | Kim, Myongjin, Kym, Dohern, Hur, Jun, Park, Jongsoo, Yoon, Jaechul, Cho, Yong Suk, Chun, Wook, Yoon, Dogeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464319/ https://www.ncbi.nlm.nih.gov/pubmed/37626427 http://dx.doi.org/10.1186/s40001-023-01268-3 |
Ejemplares similares
-
Evaluating clinical heterogeneity and predicting mortality in severely burned patients through unsupervised clustering and latent class analysis
por: Kim, Sungmin, et al.
Publicado: (2023) -
Longitudinal profile of routine biomarkers for mortality prediction using unsupervised clustering algorithm in severely burned patients: a retrospective cohort study with prospectively collected data
por: Yoon, Jaechul, et al.
Publicado: (2023) -
Validation of Sepsis-3 using survival analysis and clinical evaluation of quick SOFA, SIRS, and burn-specific SIRS for sepsis in burn patients with suspected infection
por: Yoon, Jaechul, et al.
Publicado: (2023) -
Trajectories of longitudinal biomarkers for mortality in severely burned patients
por: Yoon, Jaechul, et al.
Publicado: (2020) -
Time-varying discrimination accuracy of longitudinal biomarkers for the prediction of mortality compared to assessment at fixed time point in severe burns patients
por: Yoon, Jaechul, et al.
Publicado: (2021)