Cargando…
Practical guidelines for the use of gradient boosting for molecular property prediction
Decision tree ensembles are among the most robust, high-performing and computationally efficient machine learning approaches for quantitative structure–activity relationship (QSAR) modeling. Among them, gradient boosting has recently garnered particular attention, for its performance in data science...
Autores principales: | Boldini, Davide, Grisoni, Francesca, Kuhn, Daniel, Friedrich, Lukas, Sieber, Stephan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464382/ https://www.ncbi.nlm.nih.gov/pubmed/37641120 http://dx.doi.org/10.1186/s13321-023-00743-7 |
Ejemplares similares
-
Tuning gradient boosting for imbalanced bioassay modelling with custom loss functions
por: Boldini, Davide, et al.
Publicado: (2022) -
Discovery of Novel Molecular Frameworks of Farnesoid X Receptor Modulators by Ensemble Machine Learning
por: Merk, Daniel, et al.
Publicado: (2018) -
Discovery of Novel Molecular Frameworks of Farnesoid X Receptor Modulators by Ensemble Machine Learning
por: Merk, Daniel, et al.
Publicado: (2018) -
Front Cover: Discovery of Novel Molecular Frameworks of Farnesoid X Receptor Modulators by Ensemble Machine Learning (ChemistryOpen 1/2019)
por: Merk, Daniel, et al.
Publicado: (2018) -
Bioactive Molecule Prediction Using Extreme Gradient Boosting
por: Babajide Mustapha, Ismail, et al.
Publicado: (2016)