Cargando…
Learning to reason over scene graphs: a case study of finetuning GPT-2 into a robot language model for grounded task planning
Long-horizon task planning is essential for the development of intelligent assistive and service robots. In this work, we investigate the applicability of a smaller class of large language models (LLMs), specifically GPT-2, in robotic task planning by learning to decompose tasks into subgoal specifi...
Autores principales: | Chalvatzaki, Georgia, Younes, Ali, Nandha, Daljeet, Le, An Thai, Ribeiro, Leonardo F. R., Gurevych, Iryna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464606/ https://www.ncbi.nlm.nih.gov/pubmed/37649810 http://dx.doi.org/10.3389/frobt.2023.1221739 |
Ejemplares similares
-
Developing ChatGPT’s Theory of Mind
por: Marchetti, Antonella, et al.
Publicado: (2023) -
Combining Unsupervised and Supervised Learning for Sample Efficient Continuous Language Grounding
por: Roesler, Oliver
Publicado: (2022) -
Virtually Being Lenin Enhances Presence and Engagement in a Scene From the Russian Revolution
por: Slater, Mel, et al.
Publicado: (2018) -
Framework for environment perception: Ensemble method for vision-based scene understanding algorithms in agriculture
por: Mujkic, Esma, et al.
Publicado: (2023) -
Two ways to make your robot proactive: Reasoning about human intentions or reasoning about possible futures
por: Buyukgoz, Sera, et al.
Publicado: (2022)