Cargando…

Deep focus light-field camera for handheld 3D intraoral scanning using crosstalk-free solid immersion microlens arrays

3D in vivo imaging techniques facilitate disease tracking and treatment, but bulky configurations and motion artifacts limit practical clinical applications. Compact light-field cameras with microlens arrays offer a feasible option for rapid volumetric imaging, yet their utilization in clinical prac...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Jae-Myeong, Bae, Sang-In, Kim, Taehan, Kim, Jeong Kun, Jeong, Ki-Hun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465169/
https://www.ncbi.nlm.nih.gov/pubmed/37649619
http://dx.doi.org/10.1063/5.0155862
Descripción
Sumario:3D in vivo imaging techniques facilitate disease tracking and treatment, but bulky configurations and motion artifacts limit practical clinical applications. Compact light-field cameras with microlens arrays offer a feasible option for rapid volumetric imaging, yet their utilization in clinical practice necessitates an increased depth-of-field for handheld operation. Here, we report deep focus light-field camera (DF-LFC) with crosstalk-free solid immersion microlens arrays (siMLAs), allowing large depth-of-field and high-resolution imaging for handheld 3D intraoral scanning. The siMLAs consist of thin PDMS-coated microlens arrays and a metal–insulator–metal absorber to extend the focal length with low optical crosstalk and specular reflection. The experimental results show that the immersion of MLAs in PDMS increases the focal length by a factor of 2.7 and the transmittance by 5.6%–27%. Unlike conventional MLAs, the siMLAs exhibit exceptionally high f-numbers up to f/6, resulting in a large depth-of-field for light-field imaging. The siMLAs were fully integrated into an intraoral scanner to reconstruct a 3D dental phantom with a distance measurement error of 82 ± 41 μm during handheld operation. The DF-LFC offers a new direction not only for digital dental impressions with high accuracy, simplified workflow, reduced waste, and digital compatibility but also for assorted clinical endoscopy and microscopy.