Cargando…

A cell-based assay for rapid assessment of ACE2 catalytic function

Angiotensin-converting enzyme II (ACE2) is a monocarboxypeptidase expressed throughout multiple tissues and its catalysis of bioactive peptides regulates the renin-angiotensin system mediating blood pressure homeostasis. ACE2 is implicated in a variety of diseases, including obesity, diabetes, and c...

Descripción completa

Detalles Bibliográficos
Autores principales: Meyers, Warren M., Hong, Ryan J., Sin, Wun Chey, Kim, Christine S., Haas, Kurt
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465489/
https://www.ncbi.nlm.nih.gov/pubmed/37644110
http://dx.doi.org/10.1038/s41598-023-41389-7
Descripción
Sumario:Angiotensin-converting enzyme II (ACE2) is a monocarboxypeptidase expressed throughout multiple tissues and its catalysis of bioactive peptides regulates the renin-angiotensin system mediating blood pressure homeostasis. ACE2 is implicated in a variety of diseases, including obesity, diabetes, and cardiovascular diseases, and is the obligate entry receptor for SARS-CoV-2 infection. Disease-associated genetic variants of ACE2 are increasingly being identified but are poorly characterized. To aid this problem, we introduce a fluorometric cell-based assay for evaluating surface-expressed ACE2 catalytic activity that preserves the native glycosylation of the host environment and is amenable to high-throughput analysis of ACE2 variants in multi-well plates. We demonstrate sensitivity to detecting catalysis of the key ACE2 substrates, Angiotensin II, Apelin-13, and des-Arg(9)-bradykinin, and impact of a catalytically-deficient ACE2 variant. Normalizing catalytic measures to surface ACE2 expression accounts for variability in ACE2 variant transfection, surface delivery or stability. This assay provides a convenient and powerful approach for investigating the catalytic characteristics of ACE2 variants involved in cardiovascular peptide cascades and homeostasis of multiple organs.