Cargando…
Attention U-net for automated pulmonary fissure integrity analysis in lung computed tomography images
Computed Tomography (CT) imaging is routinely used for imaging of the lungs. Deep learning can effectively automate complex and laborious tasks in medical imaging. In this work, a deep learning technique is utilized to assess lobar fissure completeness (also known as fissure integrity) from pulmonar...
Autores principales: | Althof, Zachary W., Gerard, Sarah E., Eskandari, Ali, Galizia, Mauricio S., Hoffman, Eric A., Reinhardt, Joseph M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465516/ https://www.ncbi.nlm.nih.gov/pubmed/37644125 http://dx.doi.org/10.1038/s41598-023-41322-y |
Ejemplares similares
-
Anatomical Variations in Pulmonary Fissures on Computed Tomography (CT)
por: Moiz, Nadia, et al.
Publicado: (2022) -
Attention‐guided duplex adversarial U‐net for pancreatic segmentation from computed tomography images
por: Li, Meiyu, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Application of Multi-Scale Fusion Attention U-Net to Segment the Thyroid Gland on Localized Computed Tomography Images for Radiotherapy
por: Wen, Xiaobo, et al.
Publicado: (2022) -
Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net
por: Hu, Yifan, et al.
Publicado: (2023)