Cargando…

Proposal for a Lorenz qubit

Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz attractors. A Lo...

Descripción completa

Detalles Bibliográficos
Autor principal: Geller, Michael R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465570/
https://www.ncbi.nlm.nih.gov/pubmed/37644072
http://dx.doi.org/10.1038/s41598-023-40893-0
Descripción
Sumario:Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by real or simulated mean field dynamics, with linear amplification and dissipation. This would extend engineered Lorenz systems to the quantum regime, allowing for their direct experimental study and possible application to quantum information processing.