Cargando…
Low-light image enhancement via adaptive frequency decomposition network
Images captured in low light conditions suffer from low visibility, blurred details and strong noise, resulting in unpleasant visual appearance and poor performance of high level visual tasks. To address these problems, existing approaches have attempted to enhance the visibility of low-light images...
Autores principales: | Liang, Xiwen, Chen, Xiaoyan, Ren, Keying, Miao, Xia, Chen, Zhihui, Jin, Yutao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465598/ https://www.ncbi.nlm.nih.gov/pubmed/37644042 http://dx.doi.org/10.1038/s41598-023-40899-8 |
Ejemplares similares
-
Low-Light Image Enhancement via Retinex-Style Decomposition of Denoised Deep Image Prior
por: Gao, Xianjie, et al.
Publicado: (2022) -
Cyclic Generative Attention-Adversarial Network for Low-Light Image Enhancement
por: Zhen, Tong, et al.
Publicado: (2023) -
Efficient adaptive feature aggregation network for low-light image enhancement
por: Li, Canlin, et al.
Publicado: (2022) -
FDMLNet: A Frequency-Division and Multiscale Learning Network for Enhancing Low-Light Image
por: Lu, Haoxiang, et al.
Publicado: (2022) -
Time-frequency and time-scale methods: adaptive decompositions, uncertainty principles, and sampling
por: Hogan, Jeffrey A, et al.
Publicado: (2005)