Cargando…

Association between carotid atherosclerosis and brain activation patterns during the Stroop task in older adults: An fNIRS investigation

There is an increasing body of evidence suggesting that vascular disease could contribute to cognitive decline and overt dementia. Of particular interest is atherosclerosis, as it is not only associated with dementia, but could be a potential mechanism through which cardiovascular disease directly i...

Descripción completa

Detalles Bibliográficos
Autores principales: Mason, Sarah A., Al Saikhan, Lamia, Jones, Siana, James, Sarah-Naomi, Murray-Smith, Heidi, Rapala, Alicja, Williams, Suzanne, Sudre, Carole, Wong, Brian, Richards, Marcus, Fox, Nick C., Hardy, Rebecca, Schott, Jonathan M., Chaturvedi, Nish, Hughes, Alun D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466022/
https://www.ncbi.nlm.nih.gov/pubmed/35595200
http://dx.doi.org/10.1016/j.neuroimage.2022.119302
Descripción
Sumario:There is an increasing body of evidence suggesting that vascular disease could contribute to cognitive decline and overt dementia. Of particular interest is atherosclerosis, as it is not only associated with dementia, but could be a potential mechanism through which cardiovascular disease directly impacts brain health. In this work, we evaluated the differences in functional near infrared spectroscopy (fNIRS)-based measures of brain activation, task performance, and the change in central hemodynamics (mean arterial pressure (MAP) and heart rate (HR)) during a Stroop color-word task in individuals with atherosclerosis, defined as bilateral carotid plaques (n = 33) and healthy age-matched controls (n = 33). In the healthy control group, the left prefrontal cortex (LPFC) was the only region showing evidence of activation when comparing the incongruous with the nominal Stroop test. A smaller extent of brain activation was observed in the Plaque group compared with the healthy controls (1) globally, as measured by oxygenated hemoglobin (p = 0.036) and (2) in the LPFC (p = 0.02) and left sensorimotor cortices (LMC)(p = 0.008) as measured by deoxygenated hemoglobin. There were no significant differences in HR, MAP, or task performance (both in terms of the time required to complete the task and number of errors made) between Plaque and control groups. These results suggest that carotid atherosclerosis is associated with altered functional brain activation patterns despite no evidence of impaired performance of the Stroop task or central hemodynamic changes.