Cargando…

Predicting pyrolysis decomposition of PFOA using computational nanoreactors: a thermodynamic study

Per- and polyfluoroalkyl substances (PFAS) are a large, complex, environmentally persistent, and ever-expanding group of manufactured chemicals. Disposal of these compounds could produce potentially dangerous products necessitating the need to quickly predict their decomposition products. This study...

Descripción completa

Detalles Bibliográficos
Autores principales: Serna-Sanchez, Elizabeth, Pellizzeri, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466175/
https://www.ncbi.nlm.nih.gov/pubmed/37655356
http://dx.doi.org/10.1039/d3ra05187k
Descripción
Sumario:Per- and polyfluoroalkyl substances (PFAS) are a large, complex, environmentally persistent, and ever-expanding group of manufactured chemicals. Disposal of these compounds could produce potentially dangerous products necessitating the need to quickly predict their decomposition products. This study focuses on the thermal decomposition of perfluorooctanoic acid (PFOA) using nanoreactor simulations to find the decomposition products and their respective energies. Applying the nanoreactor method, which is novel for this system, allows for rapid prediction of thermal decomposition pathways with minimal researcher bias and it predicted PFOA to decompose at ∼650 °C, consistent with previously reported experimental studies.