Cargando…

Updating mortality risk estimation in intensive care units from high-dimensional electronic health records with incomplete data

BACKGROUND: The risk of mortality in intensive care units (ICUs) is currently addressed by the implementation of scores using admission data. Their performances are satisfactory when complications occur early after admission; however, they may become irrelevant in the case of long hospital stays. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Bouvarel, Bertrand, Carrat, Fabrice, Lapidus, Nathanael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466694/
https://www.ncbi.nlm.nih.gov/pubmed/37648995
http://dx.doi.org/10.1186/s12911-023-02264-7
Descripción
Sumario:BACKGROUND: The risk of mortality in intensive care units (ICUs) is currently addressed by the implementation of scores using admission data. Their performances are satisfactory when complications occur early after admission; however, they may become irrelevant in the case of long hospital stays. In this study, we developed predictive models of short-term mortality in the ICU from longitudinal data. METHODS: Using data collected throughout patients’ stays of at least 48 h from the MIMIC-III database, several statistical learning approaches were compared, including deep neural networks and penalized regression. Missing data were handled using complete-case analysis or multiple imputation. RESULTS: Complete-case analyses from 19 predictors showed good discrimination (AUC > 0.77 for several approaches) to predict death between 12 and 24 h onward, yet excluded 75% of patients from the initial target cohort, as data was missing for some of the predictors. Multiple imputation allowed us to include 70 predictors and keep 95% of patients, with similar performances. CONCLUSION: This proof-of-concept study supports that automated analysis of electronic health records can be of great interest throughout patients’ stays as a surveillance tool. Although this framework relies on a large set of predictors, it is robust to data imputation and may be effective early after admission, when data are still scarce. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-023-02264-7.