Cargando…
Identification of distinct clinical phenotypes of cardiogenic shock using machine learning consensus clustering approach
BACKGROUND: Cardiogenic shock (CS) is a complex state with many underlying causes and associated outcomes. It is still difficult to differentiate between various CS phenotypes. We investigated if the CS phenotypes with distinctive clinical profiles and prognoses might be found using the machine lear...
Autores principales: | Wang, Li, Zhang, Yufeng, Yao, Renqi, Chen, Kai, Xu, Qiumeng, Huang, Renhong, Mao, Zhiguo, Yu, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466857/ https://www.ncbi.nlm.nih.gov/pubmed/37644414 http://dx.doi.org/10.1186/s12872-023-03380-y |
Ejemplares similares
-
Admission Serum Ionized and Total Calcium as New Predictors of Mortality in Patients with Cardiogenic Shock
por: Yu, Yue, et al.
Publicado: (2021) -
Phenotyping Cardiogenic Shock
por: Zweck, Elric, et al.
Publicado: (2021) -
Phenotyping cardiogenic shock that showed different clinical outcomes and responses to vasopressor use: a latent profile analysis from MIMIC-IV database
por: Yu, Yue, et al.
Publicado: (2023) -
The Neutrophil Percentage-to-Albumin Ratio as a New Predictor of All-Cause Mortality in Patients with Cardiogenic Shock
por: Yu, Yue, et al.
Publicado: (2020) -
Distinct Phenotypes of Non-Citizen Kidney Transplant Recipients in the United States by Machine Learning Consensus Clustering
por: Thongprayoon, Charat, et al.
Publicado: (2023)