Cargando…

Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research

Combination monoclonal broadly neutralizing antibody (bnAb) regimens are in clinical development for HIV prevention, necessitating additional knowledge of bnAb neutralization potency/breadth against circulating viruses. Williamson et al. (2021) described a software tool, Super LeArner Prediction of...

Descripción completa

Detalles Bibliográficos
Autores principales: Williamson, Brian D., Magaret, Craig A., Karuna, Shelly, Carpp, Lindsay N., Gelderblom, Huub C., Huang, Yunda, Benkeser, David, Gilbert, Peter B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466901/
https://www.ncbi.nlm.nih.gov/pubmed/37654470
http://dx.doi.org/10.1016/j.isci.2023.107595
_version_ 1785098995166609408
author Williamson, Brian D.
Magaret, Craig A.
Karuna, Shelly
Carpp, Lindsay N.
Gelderblom, Huub C.
Huang, Yunda
Benkeser, David
Gilbert, Peter B.
author_facet Williamson, Brian D.
Magaret, Craig A.
Karuna, Shelly
Carpp, Lindsay N.
Gelderblom, Huub C.
Huang, Yunda
Benkeser, David
Gilbert, Peter B.
author_sort Williamson, Brian D.
collection PubMed
description Combination monoclonal broadly neutralizing antibody (bnAb) regimens are in clinical development for HIV prevention, necessitating additional knowledge of bnAb neutralization potency/breadth against circulating viruses. Williamson et al. (2021) described a software tool, Super LeArner Prediction of NAb Panels (SLAPNAP), with application to any HIV bnAb regimen with sufficient neutralization data against a set of viruses in the Los Alamos National Laboratory’s Compile, Neutralize, and Tally Nab Panels repository. SLAPNAP produces a proteomic antibody resistance (PAR) score for Env sequences based on predicted neutralization resistance and estimates variable importance of Env amino acid features. We apply SLAPNAP to compare HIV bnAb regimens undergoing clinical testing, finding improved power for downstream sieve analyses and increased precision for comparing neutralization potency/breadth of bnAb regimens due to the inclusion of PAR scores of Env sequences with much larger sample sizes available than for neutralization outcomes. SLAPNAP substantially improves bnAb regimen characterization, ranking, and down-selection.
format Online
Article
Text
id pubmed-10466901
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104669012023-08-31 Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research Williamson, Brian D. Magaret, Craig A. Karuna, Shelly Carpp, Lindsay N. Gelderblom, Huub C. Huang, Yunda Benkeser, David Gilbert, Peter B. iScience Article Combination monoclonal broadly neutralizing antibody (bnAb) regimens are in clinical development for HIV prevention, necessitating additional knowledge of bnAb neutralization potency/breadth against circulating viruses. Williamson et al. (2021) described a software tool, Super LeArner Prediction of NAb Panels (SLAPNAP), with application to any HIV bnAb regimen with sufficient neutralization data against a set of viruses in the Los Alamos National Laboratory’s Compile, Neutralize, and Tally Nab Panels repository. SLAPNAP produces a proteomic antibody resistance (PAR) score for Env sequences based on predicted neutralization resistance and estimates variable importance of Env amino acid features. We apply SLAPNAP to compare HIV bnAb regimens undergoing clinical testing, finding improved power for downstream sieve analyses and increased precision for comparing neutralization potency/breadth of bnAb regimens due to the inclusion of PAR scores of Env sequences with much larger sample sizes available than for neutralization outcomes. SLAPNAP substantially improves bnAb regimen characterization, ranking, and down-selection. Elsevier 2023-08-09 /pmc/articles/PMC10466901/ /pubmed/37654470 http://dx.doi.org/10.1016/j.isci.2023.107595 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Williamson, Brian D.
Magaret, Craig A.
Karuna, Shelly
Carpp, Lindsay N.
Gelderblom, Huub C.
Huang, Yunda
Benkeser, David
Gilbert, Peter B.
Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research
title Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research
title_full Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research
title_fullStr Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research
title_full_unstemmed Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research
title_short Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research
title_sort application of the slapnap statistical learning tool to broadly neutralizing antibody hiv prevention research
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466901/
https://www.ncbi.nlm.nih.gov/pubmed/37654470
http://dx.doi.org/10.1016/j.isci.2023.107595
work_keys_str_mv AT williamsonbriand applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch
AT magaretcraiga applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch
AT karunashelly applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch
AT carpplindsayn applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch
AT gelderblomhuubc applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch
AT huangyunda applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch
AT benkeserdavid applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch
AT gilbertpeterb applicationoftheslapnapstatisticallearningtooltobroadlyneutralizingantibodyhivpreventionresearch