Cargando…
Modelling the effects of mixing ratio and temperature on the thermal conductivity of GNP-Alumina hybrid nanofluids: A comparison of ANN, RSM, and linear regression methods
This research aimed to evaluate and compare the efficacy of three distinct methods for forecasting the thermal conductivity of GNP-Alumina hybrid nanofluids. The methods under consideration were artificial neural network (ANN), response surface methodology (RSM), and linear regression (LR). The pred...
Autores principales: | Borode, Adeola, Olubambi, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466917/ https://www.ncbi.nlm.nih.gov/pubmed/37654458 http://dx.doi.org/10.1016/j.heliyon.2023.e19228 |
Ejemplares similares
-
Stability and Thermophysical Properties of GNP-Fe(2)O(3) Hybrid Nanofluid: Effect of Volume Fraction and Temperature
por: Borode, Adeola, et al.
Publicado: (2023) -
Electrochemical corrosion behavior of copper in graphene-based thermal fluid with different surfactants
por: Borode, Adeola O., et al.
Publicado: (2021) -
Investigation on the Thermal Conductivity of Mineral Oil-Based Alumina/Aluminum Nitride Nanofluids
por: Xiang, Dong, et al.
Publicado: (2019) -
Practical PBT/PC/GNP composites with anisotropic thermal conductivity
por: Zheng, Xiaolei, et al.
Publicado: (2019) -
Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids
por: Zhao, Ningbo, et al.
Publicado: (2017)