Cargando…
Optimizing the predictive power of depression screenings using machine learning
OBJECTIVE: Mental health self-report and clinician-rating scales with diagnoses defined by sum-score cut-offs are often used for depression screening. This study investigates whether machine learning (ML) can detect major depressive episodes (MDE) based on screening scales with higher accuracy than...
Autores principales: | Terhorst, Yannik, Sander, Lasse B, Ebert, David D, Baumeister, Harald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467308/ https://www.ncbi.nlm.nih.gov/pubmed/37654715 http://dx.doi.org/10.1177/20552076231194939 |
Ejemplares similares
-
Predicting heterogeneous treatment effects of an Internet-based depression intervention for patients with chronic back pain: Secondary analysis of two randomized controlled trials()()()
por: Harrer, Mathias, et al.
Publicado: (2023) -
Predicting Symptoms of Depression and Anxiety Using Smartphone and Wearable Data
por: Moshe, Isaac, et al.
Publicado: (2021) -
Predictors of Dropout in a Digital Intervention for the Prevention and Treatment of Depression in Patients With Chronic Back Pain: Secondary Analysis of Two Randomized Controlled Trials
por: Moshe, Isaac, et al.
Publicado: (2022) -
Predicting Depression From Smartphone Behavioral Markers Using Machine Learning Methods, Hyperparameter Optimization, and Feature Importance Analysis: Exploratory Study
por: Opoku Asare, Kennedy, et al.
Publicado: (2021) -
Are guided internet-based interventions for the indicated prevention of depression in green professions effective in the long run? Longitudinal analysis of the 6- and 12-month follow-up of a pragmatic randomized controlled trial (PROD-A)
por: Braun, Lina, et al.
Publicado: (2021)