Cargando…

Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow

For production of clean drinking water, the processes governing bacterial remobilization in the unsaturated zone at transient water flow are critical. Although managed aquifer recharge is an effective way to dispose of pathogens, there are concerns about recontamination after heavy precipitation. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Soltani Tehrani, Rozita, Hornstra, Luc, van Dam, Jos, Cirkel, Dirk Gijsbert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467344/
https://www.ncbi.nlm.nih.gov/pubmed/37458609
http://dx.doi.org/10.1128/aem.00219-23
_version_ 1785099091971145728
author Soltani Tehrani, Rozita
Hornstra, Luc
van Dam, Jos
Cirkel, Dirk Gijsbert
author_facet Soltani Tehrani, Rozita
Hornstra, Luc
van Dam, Jos
Cirkel, Dirk Gijsbert
author_sort Soltani Tehrani, Rozita
collection PubMed
description For production of clean drinking water, the processes governing bacterial remobilization in the unsaturated zone at transient water flow are critical. Although managed aquifer recharge is an effective way to dispose of pathogens, there are concerns about recontamination after heavy precipitation. To better understand how bacteria that were initially retained in porous media can be released to groundwater due to transient water content, transport experiments and modeling for Escherichia coli and Enterococcus moraviensis were conducted at the soil column scale. After inoculating dune sand columns with a bacteria suspension for 4 h, three rainfall events were performed at 24-h intervals. The effluent from sand columns was collected to analyze bacteria breakthrough curves (BTCs). After the rainfall experiments, the bacteria distribution in the sand column was determined. The collected BTCs and profile retentions were modeled with HYDRUS-1D, using different model concepts, including one-site kinetic attachment/detachment (M1), Langmuirian (M2), Langmuirian and blocking (M3), and two-site attachment/detachment (M4). After inoculation, almost 99% of the bacteria remained in the soil. The M1 and M2 bacteria models had a high agreement between observed and modeled concentrations, and attachment and detachment were two significant mechanisms for regulating bacteria movement in a porous medium with fluctuations in water flow. At the end of the experiment, the majority of bacteria were still found within the depth range of 5 cm to 15 cm. Our experiments show that E. coli is more mobile in sandy soils than E. moraviensis. The results of this study also suggest that the unsaturated zone is an important barrier between microbial contamination at the soil surface and groundwater. Follow-up studies are needed to completely understand the variables that regulate bacteria remobilization in the unsaturated zone of dune sands. IMPORTANCE At managed artificial recharge sites in the Netherlands, recontamination of infiltrated water with fecal indicator bacteria has been observed. The results of this study suggest that the unsaturated zone is an important barrier between microbial contamination at the soil surface and groundwater. Bacteria that accumulate in the unsaturated zone, on the other hand, can multiply to such an extent that they can be released into the saturated zone when saturation increases due to major rain events or a rise in groundwater level.
format Online
Article
Text
id pubmed-10467344
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-104673442023-08-31 Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow Soltani Tehrani, Rozita Hornstra, Luc van Dam, Jos Cirkel, Dirk Gijsbert Appl Environ Microbiol Environmental Microbiology For production of clean drinking water, the processes governing bacterial remobilization in the unsaturated zone at transient water flow are critical. Although managed aquifer recharge is an effective way to dispose of pathogens, there are concerns about recontamination after heavy precipitation. To better understand how bacteria that were initially retained in porous media can be released to groundwater due to transient water content, transport experiments and modeling for Escherichia coli and Enterococcus moraviensis were conducted at the soil column scale. After inoculating dune sand columns with a bacteria suspension for 4 h, three rainfall events were performed at 24-h intervals. The effluent from sand columns was collected to analyze bacteria breakthrough curves (BTCs). After the rainfall experiments, the bacteria distribution in the sand column was determined. The collected BTCs and profile retentions were modeled with HYDRUS-1D, using different model concepts, including one-site kinetic attachment/detachment (M1), Langmuirian (M2), Langmuirian and blocking (M3), and two-site attachment/detachment (M4). After inoculation, almost 99% of the bacteria remained in the soil. The M1 and M2 bacteria models had a high agreement between observed and modeled concentrations, and attachment and detachment were two significant mechanisms for regulating bacteria movement in a porous medium with fluctuations in water flow. At the end of the experiment, the majority of bacteria were still found within the depth range of 5 cm to 15 cm. Our experiments show that E. coli is more mobile in sandy soils than E. moraviensis. The results of this study also suggest that the unsaturated zone is an important barrier between microbial contamination at the soil surface and groundwater. Follow-up studies are needed to completely understand the variables that regulate bacteria remobilization in the unsaturated zone of dune sands. IMPORTANCE At managed artificial recharge sites in the Netherlands, recontamination of infiltrated water with fecal indicator bacteria has been observed. The results of this study suggest that the unsaturated zone is an important barrier between microbial contamination at the soil surface and groundwater. Bacteria that accumulate in the unsaturated zone, on the other hand, can multiply to such an extent that they can be released into the saturated zone when saturation increases due to major rain events or a rise in groundwater level. American Society for Microbiology 2023-07-17 /pmc/articles/PMC10467344/ /pubmed/37458609 http://dx.doi.org/10.1128/aem.00219-23 Text en Copyright © 2023 Soltani Tehrani et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Environmental Microbiology
Soltani Tehrani, Rozita
Hornstra, Luc
van Dam, Jos
Cirkel, Dirk Gijsbert
Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow
title Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow
title_full Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow
title_fullStr Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow
title_full_unstemmed Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow
title_short Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow
title_sort transport and retention of fecal indicator bacteria in unsaturated porous media: effect of transient water flow
topic Environmental Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467344/
https://www.ncbi.nlm.nih.gov/pubmed/37458609
http://dx.doi.org/10.1128/aem.00219-23
work_keys_str_mv AT soltanitehranirozita transportandretentionoffecalindicatorbacteriainunsaturatedporousmediaeffectoftransientwaterflow
AT hornstraluc transportandretentionoffecalindicatorbacteriainunsaturatedporousmediaeffectoftransientwaterflow
AT vandamjos transportandretentionoffecalindicatorbacteriainunsaturatedporousmediaeffectoftransientwaterflow
AT cirkeldirkgijsbert transportandretentionoffecalindicatorbacteriainunsaturatedporousmediaeffectoftransientwaterflow