Cargando…
Click’n lock: rapid exchange between unsymmetric tetrazines and thiols for reversible, chemoselective functionalisation of biomolecules with on-demand bioorthogonal locking
The late-stage functionalisation and diversification of complex structures including biomolecules is often achieved with the help of click chemistry. Besides employing irreversible click-like reactions, many synthetic applications benefit from reversible click reaction strategies, so called de-/tran...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467616/ https://www.ncbi.nlm.nih.gov/pubmed/37654505 http://dx.doi.org/10.1039/d3cb00062a |
Sumario: | The late-stage functionalisation and diversification of complex structures including biomolecules is often achieved with the help of click chemistry. Besides employing irreversible click-like reactions, many synthetic applications benefit from reversible click reaction strategies, so called de-/trans-click approaches. Yet, the combination of both, reversible and irreversible click chemistry – while still respecting the stringent criteria of click transformations – remains so far elusive for modifications of biomolecular structures. Here, we report click’n lock as a concept that enables reversible click reactions and on-demand locking of chemical entities, thus switching from reversible to irreversible modifications of complex biomolecules. For this purpose, we employ the tetrazine–thiol exchange (TeTEx) reaction as a fully traceless click reaction with second order rate constants k(2) higher than 2 M(−1) s(−1) within aqueous environments. Employing TeTEx as a reversible click reaction for the chemoselective modification of biomolecules is made possible by the use of 3,6-disubstituted 1,2,4,5-tetrazines bearing a single sulfide residue. The inherent reactivity of tetrazines towards inverse electron demand Diels–Alder (IEDDA) reactions allows to stabilize the clicked structure, switching from reversible to irreversible systems (click’n lock). |
---|