Cargando…

Age-dependent relationships among diet, body condition, and Echinococcus multilocularis infection in urban coyotes

Urban coyotes (Canis latrans) in North America increasingly exhibit a high prevalence of Echinococcus multilocularis, a cestode of recent and rising public health concern that uses rodents as intermediate hosts and canids as definitive hosts. However, little is known about the factors that drive the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sugden, Scott, Steckler, Deanna K., Sanderson, Dana, Abercrombie, Bill, Abercrombie, Duncan, Seguin, M. Alexis, Ford, Kyra, St. Clair, Colleen Cassady
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468061/
https://www.ncbi.nlm.nih.gov/pubmed/37647321
http://dx.doi.org/10.1371/journal.pone.0290755
Descripción
Sumario:Urban coyotes (Canis latrans) in North America increasingly exhibit a high prevalence of Echinococcus multilocularis, a cestode of recent and rising public health concern that uses rodents as intermediate hosts and canids as definitive hosts. However, little is known about the factors that drive the high urban prevalence of this parasite. We hypothesized that the diet of urban coyotes may contribute to their higher E. multilocularis infection prevalence via either (a) greater exposure to the parasite from increased rodent consumption or (b) increased susceptibility to infection due to the negative health effects of consuming anthropogenic food. We tested these hypotheses by comparing the presence and intensity of E. multilocularis infection to physiological data (age, sex, body condition, and spleen mass), short-term diet (stomach contents), and long-term diet (δ(13)C and δ(15)N stable isotopes) in 112 coyote carcasses collected for reasons other than this study from Edmonton, Alberta and the surrounding area. Overall, the best predictor of infection status in this population was young age, where the likelihood of infection decreased with age in rural coyotes but not urban ones. Neither short- nor long-term measures of diet could predict infection across our entire sample, but we found support for our initial hypotheses in young, urban coyotes: both rodent and anthropogenic food consumption effectively predicted E. multilocularis infection in this population. The effects of these predictors were more variable in rural coyotes and older coyotes. We suggest that limiting coyote access to areas in which anthropogenic food and rodent habitat overlap (e.g., compost piles or garbage sites) may effectively reduce the risk of infection, deposition, and transmission of this emerging zoonotic parasite in urban areas.