Cargando…
Optimal sparsity allows reliable system-aware restoration of fluorescence microscopy images
Fluorescence microscopy is one of the most indispensable and informative driving forces for biological research, but the extent of observable biological phenomena is essentially determined by the content and quality of the acquired images. To address the different noise sources that can degrade thes...
Autores principales: | Mandracchia, Biagio, Liu, Wenhao, Hua, Xuanwen, Forghani, Parvin, Lee, Soojung, Hou, Jessica, Nie, Shuyi, Xu, Chunhui, Jia, Shu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468132/ https://www.ncbi.nlm.nih.gov/pubmed/37647399 http://dx.doi.org/10.1126/sciadv.adg9245 |
Ejemplares similares
-
Fast and accurate sCMOS noise correction for fluorescence microscopy
por: Mandracchia, Biagio, et al.
Publicado: (2020) -
Profiling single cancer cell metabolism via high-content SRS imaging with chemical sparsity
por: Tan, Yuying, et al.
Publicado: (2023) -
Sparsity-Aware Noise Subspace Fitting for DOA Estimation
por: Zheng, Chundi, et al.
Publicado: (2019) -
Sparsity-based multi-height phase recovery in holographic microscopy
por: Rivenson, Yair, et al.
Publicado: (2016) -
Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar
por: Wang, Xianpeng, et al.
Publicado: (2016)