Cargando…
Longitudinal machine learning model for predicting systolic blood pressure in patients with heart failure
OBJECTIVE: Systolic blood pressure (SBP) strongly indicates the prognosis of heart failure (HF) patients, as it is closely linked to the risk of death and readmission. Hence, maintaining control over blood pressure is a vital factor in the management of these patients. In order to determine signific...
Autores principales: | NAJAFI-VOSOUGH, ROYA, FARADMAL, JAVAD, HOSSEINI, SEYED KIANOOSH, MOGHIMBEIGI, ABBAS, MAHJUB, HOSSEIN |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pacini Editore Srl
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468193/ https://www.ncbi.nlm.nih.gov/pubmed/37654862 http://dx.doi.org/10.15167/2421-4248/jpmh2023.64.2.2887 |
Ejemplares similares
-
Predicting Hospital Readmission in Heart Failure Patients in Iran: A Comparison of Various Machine Learning Methods
por: Najafi-Vosough, Roya, et al.
Publicado: (2021) -
Evaluation of the effects of diabetes self-management education based on 5A model on the quality of life and blood glucose of women with gestational diabetes mellitus: an experimental study in eastern Iran
por: ROKNI, SOMAYEH, et al.
Publicado: (2022) -
Relationship between dietary energy intake, nutritional status and cardiovascular risk in adults from the communes of Quellón and Chonchi, Chiloé, Chile
por: CROVETTO, MIRTA, et al.
Publicado: (2022) -
Prediction the survival of patients with breast cancer using random survival forests for competing risks
por: NAJAFI-VOSOUGH, ROYA, et al.
Publicado: (2022) -
Recurrence in Patients with Bipolar Disorder and Its Risk Factors
por: Najafi-Vosough, Roya, et al.
Publicado: (2016)