Cargando…
Anti-inflammatory, remorin-like protein from green marine Macroalga Caulerpa sertularioides (S.G.Gmel.) M.Howe
The most prevalent natural source of hydrocolloids, cosmetics, medications, and nutraceuticals is marine seaweed (macroalgae). Numerous bioactivities, including antiviral, anticancer, anti-inflammatory, and immunomodulatory characteristics, have been found in bioactive substances such as polyphenols...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468388/ https://www.ncbi.nlm.nih.gov/pubmed/37664755 http://dx.doi.org/10.1016/j.heliyon.2023.e19239 |
Sumario: | The most prevalent natural source of hydrocolloids, cosmetics, medications, and nutraceuticals is marine seaweed (macroalgae). Numerous bioactivities, including antiviral, anticancer, anti-inflammatory, and immunomodulatory characteristics, have been found in bioactive substances such as polyphenols and sulfated and non-sulfated polysaccharides. As a result, new start-up projects and industries based on seaweed are emerging in all regions of the world with abundant marine biodiversity. In this current investigation, the anti-inflammatory activity of two different marine macroalgae Caulerpa racemosa (CR) and Caulerpa sertularioides (CS) was evaluated. Consequently, CS demonstrated more anti-inflammatory and antioxidant effects at a lower dose than CR. The IC(50) value for DPPH inhibition was 456.1 μg/mL, and 180.9 μg/mL for CS and CR respectively. A similar result was obtained in the case of protein denaturation (PD), membrane stabilization (MS), and protease inhibition (PI) anti-inflammatory assays with 127.2 μg/mL, 135.5 μg/mL, and 71.88 μg/mL for CR, and 66.78 μg/mL, 88.96 μg/mL, and 59.54 μg/mL for CS respectively. Based on the SDS-PAGE, the molecular weight of lectin responsible for the anti-inflammatory activity was determined as 17 kDa. Protein mass fingerprinting was performed for the particular lectin by in-gel trypsin digestion, MALDI-MS analysis, and Mascot peptide mass fingerprinting. Because of this, the unidentified lectin protein was discovered to be a remorin-like protein that shared 65% of its sequence with the remorin-like protein of Aegilops tauschii subsp. tauschii. Therefore, it is the hitherto report on the presence of remorin-like protein from the green macroalga Caulerpa sertularioides. |
---|