Cargando…
Time-feature attention-based convolutional auto-encoder for flight feature extraction
Quick Access Recorders (QARs) provide an important data source for Flight Operation Quality Assurance (FOQA) and flight safety. It is generally characterized by large volume, high-dimensionality and high frequency, and these features result in extreme complexities and uncertainties in its usage and...
Autores principales: | Wang, Qixin, Qin, Kun, Lu, Binbin, Sun, Huabo, Shu, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468491/ https://www.ncbi.nlm.nih.gov/pubmed/37648750 http://dx.doi.org/10.1038/s41598-023-41295-y |
Ejemplares similares
-
Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
por: Abdelaziz, Mohammed, et al.
Publicado: (2022) -
Predicting Pseudogene–miRNA Associations Based on Feature Fusion and Graph Auto-Encoder
por: Zhou, Shijia, et al.
Publicado: (2021) -
A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks
por: Hasibi, Ramin, et al.
Publicado: (2021) -
Automatic classification of nerve discharge rhythms based on sparse auto-encoder and time series feature
por: Jiang, Zhongting, et al.
Publicado: (2022) -
Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder
por: Wang, Bokun, et al.
Publicado: (2022)