Cargando…

An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease

Cognitive impairment in Parkinson’s disease (PD) severely affects patients’ prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Chae Jung, Eom, Jihwan, Park, Ki Sung, Park, Yae Won, Chung, Seok Jong, Kim, Yun Joong, Ahn, Sung Soo, Kim, Jinna, Lee, Phil Hyu, Sohn, Young Ho, Lee, Seung-Koo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468504/
https://www.ncbi.nlm.nih.gov/pubmed/37648733
http://dx.doi.org/10.1038/s41531-023-00566-1
_version_ 1785099249932828672
author Park, Chae Jung
Eom, Jihwan
Park, Ki Sung
Park, Yae Won
Chung, Seok Jong
Kim, Yun Joong
Ahn, Sung Soo
Kim, Jinna
Lee, Phil Hyu
Sohn, Young Ho
Lee, Seung-Koo
author_facet Park, Chae Jung
Eom, Jihwan
Park, Ki Sung
Park, Yae Won
Chung, Seok Jong
Kim, Yun Joong
Ahn, Sung Soo
Kim, Jinna
Lee, Phil Hyu
Sohn, Young Ho
Lee, Seung-Koo
author_sort Park, Chae Jung
collection PubMed
description Cognitive impairment in Parkinson’s disease (PD) severely affects patients’ prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve the prediction of dementia development in PD when integrated with clinical profiles. In this retrospective study, 262 patients with newly diagnosed PD (June 2008–July 2017, follow-up >5 years) were included. MRI radiomic features (n = 1284) were extracted from bilateral caudate and putamen. Two models were developed to predict dementia development: (1) a clinical model—age, disease duration, and cognitive composite scores, and (2) a combined clinical and radiomics model. The area under the receiver operating characteristic curve (AUC) were calculated for each model. The models’ interpretabilities were studied. Among total 262 PD patients (mean age, 68 years ± 8 [standard deviation]; 134 men), 51 (30.4%), and 24 (25.5%) patients developed dementia within 5 years of PD diagnosis in the training (n = 168) and test sets (n = 94), respectively. The combined model achieved superior predictive performance compared to the clinical model in training (AUCs 0.928 vs. 0.894, P = 0.284) and test set (AUCs 0.889 vs. 0.722, P = 0.016). The cognitive composite scores of the frontal/executive function domain contributed most to predicting dementia. Radiomics derived from the caudate were also highly associated with cognitive decline. Multiparametric MRI radiomics may have an incremental prognostic value when integrated with clinical profiles to predict future cognitive decline in PD.
format Online
Article
Text
id pubmed-10468504
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104685042023-09-01 An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease Park, Chae Jung Eom, Jihwan Park, Ki Sung Park, Yae Won Chung, Seok Jong Kim, Yun Joong Ahn, Sung Soo Kim, Jinna Lee, Phil Hyu Sohn, Young Ho Lee, Seung-Koo NPJ Parkinsons Dis Article Cognitive impairment in Parkinson’s disease (PD) severely affects patients’ prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve the prediction of dementia development in PD when integrated with clinical profiles. In this retrospective study, 262 patients with newly diagnosed PD (June 2008–July 2017, follow-up >5 years) were included. MRI radiomic features (n = 1284) were extracted from bilateral caudate and putamen. Two models were developed to predict dementia development: (1) a clinical model—age, disease duration, and cognitive composite scores, and (2) a combined clinical and radiomics model. The area under the receiver operating characteristic curve (AUC) were calculated for each model. The models’ interpretabilities were studied. Among total 262 PD patients (mean age, 68 years ± 8 [standard deviation]; 134 men), 51 (30.4%), and 24 (25.5%) patients developed dementia within 5 years of PD diagnosis in the training (n = 168) and test sets (n = 94), respectively. The combined model achieved superior predictive performance compared to the clinical model in training (AUCs 0.928 vs. 0.894, P = 0.284) and test set (AUCs 0.889 vs. 0.722, P = 0.016). The cognitive composite scores of the frontal/executive function domain contributed most to predicting dementia. Radiomics derived from the caudate were also highly associated with cognitive decline. Multiparametric MRI radiomics may have an incremental prognostic value when integrated with clinical profiles to predict future cognitive decline in PD. Nature Publishing Group UK 2023-08-30 /pmc/articles/PMC10468504/ /pubmed/37648733 http://dx.doi.org/10.1038/s41531-023-00566-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Park, Chae Jung
Eom, Jihwan
Park, Ki Sung
Park, Yae Won
Chung, Seok Jong
Kim, Yun Joong
Ahn, Sung Soo
Kim, Jinna
Lee, Phil Hyu
Sohn, Young Ho
Lee, Seung-Koo
An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
title An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
title_full An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
title_fullStr An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
title_full_unstemmed An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
title_short An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
title_sort interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in parkinson’s disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468504/
https://www.ncbi.nlm.nih.gov/pubmed/37648733
http://dx.doi.org/10.1038/s41531-023-00566-1
work_keys_str_mv AT parkchaejung aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT eomjihwan aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT parkkisung aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT parkyaewon aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT chungseokjong aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT kimyunjoong aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT ahnsungsoo aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT kimjinna aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT leephilhyu aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT sohnyoungho aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT leeseungkoo aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT parkchaejung interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT eomjihwan interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT parkkisung interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT parkyaewon interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT chungseokjong interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT kimyunjoong interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT ahnsungsoo interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT kimjinna interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT leephilhyu interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT sohnyoungho interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease
AT leeseungkoo interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease