Cargando…
An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease
Cognitive impairment in Parkinson’s disease (PD) severely affects patients’ prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468504/ https://www.ncbi.nlm.nih.gov/pubmed/37648733 http://dx.doi.org/10.1038/s41531-023-00566-1 |
_version_ | 1785099249932828672 |
---|---|
author | Park, Chae Jung Eom, Jihwan Park, Ki Sung Park, Yae Won Chung, Seok Jong Kim, Yun Joong Ahn, Sung Soo Kim, Jinna Lee, Phil Hyu Sohn, Young Ho Lee, Seung-Koo |
author_facet | Park, Chae Jung Eom, Jihwan Park, Ki Sung Park, Yae Won Chung, Seok Jong Kim, Yun Joong Ahn, Sung Soo Kim, Jinna Lee, Phil Hyu Sohn, Young Ho Lee, Seung-Koo |
author_sort | Park, Chae Jung |
collection | PubMed |
description | Cognitive impairment in Parkinson’s disease (PD) severely affects patients’ prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve the prediction of dementia development in PD when integrated with clinical profiles. In this retrospective study, 262 patients with newly diagnosed PD (June 2008–July 2017, follow-up >5 years) were included. MRI radiomic features (n = 1284) were extracted from bilateral caudate and putamen. Two models were developed to predict dementia development: (1) a clinical model—age, disease duration, and cognitive composite scores, and (2) a combined clinical and radiomics model. The area under the receiver operating characteristic curve (AUC) were calculated for each model. The models’ interpretabilities were studied. Among total 262 PD patients (mean age, 68 years ± 8 [standard deviation]; 134 men), 51 (30.4%), and 24 (25.5%) patients developed dementia within 5 years of PD diagnosis in the training (n = 168) and test sets (n = 94), respectively. The combined model achieved superior predictive performance compared to the clinical model in training (AUCs 0.928 vs. 0.894, P = 0.284) and test set (AUCs 0.889 vs. 0.722, P = 0.016). The cognitive composite scores of the frontal/executive function domain contributed most to predicting dementia. Radiomics derived from the caudate were also highly associated with cognitive decline. Multiparametric MRI radiomics may have an incremental prognostic value when integrated with clinical profiles to predict future cognitive decline in PD. |
format | Online Article Text |
id | pubmed-10468504 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104685042023-09-01 An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease Park, Chae Jung Eom, Jihwan Park, Ki Sung Park, Yae Won Chung, Seok Jong Kim, Yun Joong Ahn, Sung Soo Kim, Jinna Lee, Phil Hyu Sohn, Young Ho Lee, Seung-Koo NPJ Parkinsons Dis Article Cognitive impairment in Parkinson’s disease (PD) severely affects patients’ prognosis, and early detection of patients at high risk of dementia conversion is important for establishing treatment strategies. We aimed to investigate whether multiparametric MRI radiomics from basal ganglia can improve the prediction of dementia development in PD when integrated with clinical profiles. In this retrospective study, 262 patients with newly diagnosed PD (June 2008–July 2017, follow-up >5 years) were included. MRI radiomic features (n = 1284) were extracted from bilateral caudate and putamen. Two models were developed to predict dementia development: (1) a clinical model—age, disease duration, and cognitive composite scores, and (2) a combined clinical and radiomics model. The area under the receiver operating characteristic curve (AUC) were calculated for each model. The models’ interpretabilities were studied. Among total 262 PD patients (mean age, 68 years ± 8 [standard deviation]; 134 men), 51 (30.4%), and 24 (25.5%) patients developed dementia within 5 years of PD diagnosis in the training (n = 168) and test sets (n = 94), respectively. The combined model achieved superior predictive performance compared to the clinical model in training (AUCs 0.928 vs. 0.894, P = 0.284) and test set (AUCs 0.889 vs. 0.722, P = 0.016). The cognitive composite scores of the frontal/executive function domain contributed most to predicting dementia. Radiomics derived from the caudate were also highly associated with cognitive decline. Multiparametric MRI radiomics may have an incremental prognostic value when integrated with clinical profiles to predict future cognitive decline in PD. Nature Publishing Group UK 2023-08-30 /pmc/articles/PMC10468504/ /pubmed/37648733 http://dx.doi.org/10.1038/s41531-023-00566-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Park, Chae Jung Eom, Jihwan Park, Ki Sung Park, Yae Won Chung, Seok Jong Kim, Yun Joong Ahn, Sung Soo Kim, Jinna Lee, Phil Hyu Sohn, Young Ho Lee, Seung-Koo An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease |
title | An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease |
title_full | An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease |
title_fullStr | An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease |
title_full_unstemmed | An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease |
title_short | An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease |
title_sort | interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in parkinson’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468504/ https://www.ncbi.nlm.nih.gov/pubmed/37648733 http://dx.doi.org/10.1038/s41531-023-00566-1 |
work_keys_str_mv | AT parkchaejung aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT eomjihwan aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT parkkisung aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT parkyaewon aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT chungseokjong aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT kimyunjoong aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT ahnsungsoo aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT kimjinna aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT leephilhyu aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT sohnyoungho aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT leeseungkoo aninterpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT parkchaejung interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT eomjihwan interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT parkkisung interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT parkyaewon interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT chungseokjong interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT kimyunjoong interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT ahnsungsoo interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT kimjinna interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT leephilhyu interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT sohnyoungho interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease AT leeseungkoo interpretablemultiparametricradiomicsmodelofbasalgangliatopredictdementiaconversioninparkinsonsdisease |