Cargando…

Anti-Inflammatory Efficacy of Human-Derived Streptococcus salivarius on Periodontopathogen-Induced Inflammation

Streptococcus salivarius is a beneficial bacterium in oral cavity, and some strains of this bacterium are known to be probiotics. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of S. salivarius G7 lipoteichoic acid (LTA) on lipopolysaccharide (LPS) and LTA of...

Descripción completa

Detalles Bibliográficos
Autores principales: Baek, Dong-Heon, Lee, Sung-Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Microbiology and Biotechnology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468666/
https://www.ncbi.nlm.nih.gov/pubmed/37635315
http://dx.doi.org/10.4014/jmb.2302.02002
Descripción
Sumario:Streptococcus salivarius is a beneficial bacterium in oral cavity, and some strains of this bacterium are known to be probiotics. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of S. salivarius G7 lipoteichoic acid (LTA) on lipopolysaccharide (LPS) and LTA of periodontopathogens. The surface molecules of S. salivarius G7 was extracted, and single- or co-treated on human monocytic cells with LPS and LTA of periodontopathogens. The induction of cytokine expression was evaluated by real-time PCR and ELISA. After labeling fluorescence on LPS and LTA of periodontopathogens, it was co-treated with S. salivarius LTA to the cell. The bound LPS and LTA were measured by a flow cytometer. Also, the biding assay of the LPS and LTA to CD14 and LPS binding protein (LBP) was performed. The surface molecules of S. salivarius G7 did not induce the expression of inflammatory cytokines, and S. salivarius G7 LTA inhibited the inflammatory cytokines induced by LPS and LTA of periodontopathogens. S. salivarius G7 LTA inhibited the binding of its LPS and LTA to cells. Also, S. salivarius G7 LTA blocked the binding of its LPS and LTA to CD14 and LBP. S. salivarius G7 has an inhibitory effect on inflammation induced by LPS or LTA of periodontopathogens, and may be a candidate probiotics for prevention of periodontitis.