Cargando…
Machine Learning–Enabled Clinical Information Systems Using Fast Healthcare Interoperability Resources Data Standards: Scoping Review
BACKGROUND: Machine learning–enabled clinical information systems (ML-CISs) have the potential to drive health care delivery and research. The Fast Healthcare Interoperability Resources (FHIR) data standard has been increasingly applied in developing these systems. However, methods for applying FHIR...
Autores principales: | Balch, Jeremy A, Ruppert, Matthew M, Loftus, Tyler J, Guan, Ziyuan, Ren, Yuanfang, Upchurch, Gilbert R, Ozrazgat-Baslanti, Tezcan, Rashidi, Parisa, Bihorac, Azra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468818/ https://www.ncbi.nlm.nih.gov/pubmed/37646309 http://dx.doi.org/10.2196/48297 |
Ejemplares similares
-
Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks
por: Shickel, Benjamin, et al.
Publicado: (2023) -
Building an automated, machine learning-enabled platform for predicting post-operative complications
por: Balch, Jeremy A, et al.
Publicado: (2023) -
Uncertainty-aware deep learning in healthcare: A scoping review
por: Loftus, Tyler J., et al.
Publicado: (2022) -
Clinical courses of acute kidney injury in hospitalized patients: a multistate analysis
por: Adiyeke, Esra, et al.
Publicado: (2023) -
Physiologic signatures within six hours of hospitalization identify acute illness phenotypes
por: Ren, Yuanfang, et al.
Publicado: (2022)